1.Progress of Research on Advanced Non-Small Cell Lung Cancer with HER-2 Mutation
Liang ZHANG ; Changliang YANG ; Peidong LI ; Ying CHENG
Cancer Research on Prevention and Treatment 2025;52(2):87-92
Anti-tumor drug research and development in non-small cell lung cancer (NSCLC) is rapidly developing, and the clinical application of high-throughput sequencing technology is also becoming widespread. Accordingly, researchers are focusing on human epidermal growth factor receptor-2 (HER-2) gene as a rare target of NSCLC, and a series of exploratory studies has been performed. Traditional chemotherapy and immunotherapy are unsatisfactory in the HER-2 mutant population, whereas the survival improvement of anti-HER-2 monoclonal antibodies and pan-HER inhibitors is limited. The development of antibody drug conjugate (ADC) ushers in a turning point for HER-2-mutated NSCLC, and new ADC drugs represented by trastuzumab deruxtecan are making a breakthrough. It opens up a new era of precision therapy for advanced HER-2-mutated NSCLC. Additionally, novel HER-2 inhibitors show very encouraging initial efficacy and safety, and clinical trials are ongoing. This review focuses on the latest progress of research on HER-2-mutated NSCLC.
2.Optimization of Discrete Element Simulation Parameter Calibration Method for Traditional Chinese Medicine Extract Powder Under Low Shear Conditions
Xuefang TANG ; Huanzheng LI ; Zichen LIANG ; Yifei LIU ; Ying LIU ; Fangfang XU ; Bing XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):211-218
ObjectiveTo improve the accuracy of discrete element method in simulating the processing of traditional Chinese medicine(TCM) powder system under low shear conditions. MethodsIn this study, extract powders of Tongsaimai tablets and Qige granules were used as the research objects, the angle of repose(AOR) and effective angle of internal friction of the two materials were determined by AOR test method and shear cell test method. Based on the Hertz-Mindlin with JKR V2 contact model and particle scaling theory, taking the particle-particle restitution coefficient(A), particle-particle static friction coefficient(B), particle-particle rolling friction coefficient(C), particle-steel restitution coefficient(D), particle-steel static friction coefficient(E), particle-steel rolling friction coefficient(F) and Johnson-Kendall-Roberts(JKR) surface energy(G) as test factors, the simulated contact parameters of Tongsaimai tablets extract powder were first calibrated with a single reference value using AOR as the reference value, and then the simulated contact parameters of Tongsaimai tablets extract powder as well as Qige granules extract powder were co-calibrated with AOR and effective angle of internal friction as the joint reference value, respectively. Then, Plackett-Burman design was used to screen the critical contact parameters that have a significant effect on the simulated reference value, and the steepest ascent design was used to determine the optimal range of the critical contact parameters, finally, the regression model between the critical contact parameters and the simulated reference values was established through the design of the response surface test, and the critical contact parameters were calibrated based on the regression model and the desirability function approach. ResultsThe optimal combination of discrete elemental contact parameters A-G for Tongsaimai tablets extract powder under a single reference value was 0.100, 0.718, 0.616, 0.100, 0.400, 0.250 and 0.075 J·m-2, which was validated to have relative errors of 0.10% and -8.64% for the simulated AOR and the simulated effective angle of internal friction, respectively. And the optimal combination of discrete elemental contact parameters A-G for Tongsaimai tablets extract powder at the joint reference values was 0.100, 0.682, 0.598, 0.100, 0.521, 0.294 and 0.075 J·m-2, which was verified to have relative errors of 0.10% and -0.18% for the simulated AOR and the simulated effective angle of internal friction, respectively. The optimal combination of discrete elemental contact parameters A-G for Qige granules extract powder at the joint reference values was 0.150, 0.370, 0.330, 0.150, 0.500, 0.500 and 0.100 J·m-2, which was verified to have relative errors of 2.70% and -1.30% for the simulated AOR and the simulated effective angle of internal friction, respectively. Compared with the single reference value method, the joint calibration method not only increased the number of the critical contact parameters for characterizing particle-device interactions, but also was more accurate and reliable. ConclusionCompared with the results of single reference value calibration, the results obtained by the method of joint calibration of discrete element simulation contact parameters with AOR and effective angle of internal friction as the reference values are more accurate, which can provide more accurate and reliable simulation physical property data for the simulation experiments of TCM extract powder under low shear process conditions.
3.Randomized, double-blind, parallel-controlled, multicenter, equivalence clinical trial of Jiuwei Xifeng Granules(Os Draconis replaced by Ostreae Concha) for treating tic disorder in children.
Qiu-Han CAI ; Cheng-Liang ZHONG ; Si-Yuan HU ; Xin-Min LI ; Zhi-Chun XU ; Hui CHEN ; Ying HUA ; Jun-Hong WANG ; Ji-Hong TANG ; Bing-Xiang MA ; Xiu-Xia WANG ; Ai-Zhen WANG ; Meng-Qing WANG ; Wei ZHANG ; Chun WANG ; Yi-Qun TENG ; Yi-Hui SHAN ; Sheng-Xuan GUO
China Journal of Chinese Materia Medica 2025;50(6):1699-1705
Jiuwei Xifeng Granules have become a Chinese patent medicine in the market. Because the formula contains Os Draconis, a top-level protected fossil of ancient organisms, the formula was to be improved by replacing Os Draconis with Ostreae Concha. To evaluate whether the improved formula has the same effectiveness and safety as the original formula, a randomized, double-blind, parallel-controlled, equivalence clinical trial was conducted. This study enrolled 288 tic disorder(TD) of children and assigned them into two groups in 1∶1. The treatment group and control group took the modified formula and original formula, respectively. The treatment lasted for 6 weeks, and follow-up visits were conducted at weeks 2, 4, and 6. The primary efficacy endpoint was the difference in Yale global tic severity scale(YGTSS)-total tic severity(TTS) score from baseline after 6 weeks of treatment. The results showed that after 6 weeks of treatment, the declines in YGTSS-TSS score showed no statistically significant difference between the two groups. The difference in YGTSS-TSS score(treatment group-control group) and the 95%CI of the full analysis set(FAS) were-0.17[-1.42, 1.08] and those of per-protocol set(PPS) were 0.29[-0.97, 1.56], which were within the equivalence boundary [-3, 3]. The equivalence test was therefore concluded. The two groups showed no significant differences in the secondary efficacy endpoints of effective rate for TD, total score and factor scores of YGTSS, clinical global impressions-severity(CGI-S) score, traditional Chinese medicine(TCM) response rate, or symptom disappearance rate, and thus a complete evidence chain with the primary outcome was formed. A total of 6 adverse reactions were reported, including 4(2.82%) cases in the treatment group and 2(1.41%) cases in the control group, which showed no statistically significant difference between the two groups. No serious suspected unexpected adverse reactions were reported, and no laboratory test results indicated serious clinically significant abnormalities. The results support the replacement of Os Draconis by Ostreae Concha in the original formula, and the efficacy and safety of the modified formula are consistent with those of the original formula.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Male
;
Double-Blind Method
;
Drugs, Chinese Herbal/therapeutic use*
;
Tic Disorders/drug therapy*
;
Treatment Outcome
4.Transcriptome analysis and catechin synthesis genes in different organs of Spatholobus suberectus.
Wei-Qi QIN ; Quan LIN ; Ying LIANG ; Fan WEI ; Gui-Li WEI ; Qi GAO ; Shuang-Shuang QIN
China Journal of Chinese Materia Medica 2025;50(12):3297-3306
To study the differences in transcript levels among different organs of Spatholobus suberectus and to explore the genes encoding enzymes related to the catechin biosynthesis pathway, this study utilized the genome and full-length transcriptome data of S. suberectus as references. Transcriptome sequencing and bioinformatics analysis were performed on five different organs of S. suberectus-roots, stems, leaves, flowers, and fruits-using the Illumina NovaSeq 6000 platform. A total of 115.28 Gb of clean data were obtained, with GC content values ranging from 45.19% to 47.54%, Q20 bases at 94.17% and above, and an overall comparison rate with the reference genome around 90%. In comparisons between the stem and root, stem and leaf, stem and flower, and stem and fruit, 10 666, 9 674, 9 320, and 5 896 differentially expressed genes(DEGs) were identified, respectively. The lowest number of DEGs was found in the stem and root comparison group. KEGG enrichment analysis revealed that the DEGs were mainly concentrated in the pathways of phytohormone signaling, phenylalanine biosynthesis, etc. A total of 39 genes were annotated in the catechin biosynthesis pathway, with at least one highly expressed gene found in all organs. Among these, PAL1, PAL2, C4H1, C4H3, 4CL1, 4CL2, and DFR2 showed high expression in the stems, suggesting that they may play important roles in the biosynthesis of flavonoids in S. suberectus. This study aims to provide important information for the in-depth exploration of the regulation of catechin biosynthesis in S. suberectus through transcriptome analysis of its different organs and to provide a reference for the further realization of S. suberectus varietal improvement and molecular breeding.
Catechin/biosynthesis*
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Fabaceae/metabolism*
;
Transcriptome
;
Flowers/metabolism*
;
Plant Stems/metabolism*
;
Plant Leaves/metabolism*
;
Plant Roots/metabolism*
;
Fruit/metabolism*
5.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
6.Palmitoylated SARM1 targeting P4HA1 promotes collagen deposition and myocardial fibrosis: A new target for anti-myocardial fibrosis.
Xuewen YANG ; Yanwei ZHANG ; Xiaoping LENG ; Yanying WANG ; Manyu GONG ; Dongping LIU ; Haodong LI ; Zhiyuan DU ; Zhuo WANG ; Lina XUAN ; Ting ZHANG ; Han SUN ; Xiyang ZHANG ; Jie LIU ; Tong LIU ; Tiantian GONG ; Zhengyang LI ; Shengqi LIANG ; Lihua SUN ; Lei JIAO ; Baofeng YANG ; Ying ZHANG
Acta Pharmaceutica Sinica B 2025;15(9):4789-4806
Myocardial fibrosis is a serious cause of heart failure and even sudden cardiac death. However, the mechanisms underlying myocardial ischemia-induced cardiac fibrosis remain unclear. Here, we identified that the expression of sterile alpha and TIR motif containing 1 (SARM1), was increased significantly in the ischemic cardiomyopathy patients, dilated cardiomyopathy patients (GSE116250) and fibrotic heart tissues of mice. Additionally, inhibition or knockdown of SARM1 can improve myocardial fibrosis and cardiac function of myocardial infarction (MI) mice. Moreover, SARM1 fibroblasts-specific knock-in mice had increased deposition of extracellular matrix and impaired cardiac function. Mechanically, elevated expression of SARM1 promotes the deposition of extracellular matrix by directly modulating P4HA1. Notably, by using the Click-iT reaction, we identified that the increased expression of ZDHHC17 promotes the palmitoylation levels of SARM1, thereby accelerating the fibrosis process. Based on the fibrosis-promoting effect of SARM1, we screened several drugs with anti-myocardial fibrosis activity. In conclusion, we have unveiled that palmitoylated SARM1 targeting P4HA1 promotes collagen deposition and myocardial fibrosis. Inhibition of SARM1 is a potential strategy for the treatment of myocardial fibrosis. The sites where SARM1 interacts with P4HA1 and the palmitoylation modification sites of SARM1 may be the active targets for anti-fibrosis drugs.
7.The cutting-edge progress of novel biomedicines in ovulatory dysfunction therapy.
Xuzhi LIANG ; Shiyu ZHANG ; Dahai LI ; Hao LIANG ; Yueping YAO ; Xiuhong XIA ; Hang YU ; Mingyang JIANG ; Ying YANG ; Ming GAO ; Lin LIAO ; Jiangtao FAN
Acta Pharmaceutica Sinica B 2025;15(10):5145-5166
Ovulatory dysfunction (OD) is one of the main causes of infertility in women of childbearing age, which not only affects their reproductive ability, but also physical and mental health. Traditional treatment strategies have limited efficacies, and the emergence of biomedicines provides a promising alternative solution via the strategies of combining engineered design with modern advanced technology. This review explores the pathophysiological characteristics and related induction mechanisms of OD, and evaluates the current cutting-edge advances in its treatments. It emphasizes the potentials of biomedicines strategies such as hydrogels, nanoparticles and extracellular vesicles in improving therapeutic precision and efficacy. By mimicking natural physiological processes, and achieving controlled drug release, these advanced drug carriers are expected to address the challenges in ovarian microenvironment reprogramming, tissue repair, and metabolic and immune regulation. Despite the promising progress, there are still challenges in terms of biomedical complexity, differences between animal models and human physiology, and the demand for intelligent drug carriers in the therapy of OD. Future researches are mainly dedicated to developing precise personalized biomedicines in OD therapy through interdisciplinary collaboration, promoting the development of reproductive regenerative medicine.
8.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
9.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
10.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.

Result Analysis
Print
Save
E-mail