1.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
2.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
3.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
4.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
5.Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells
Hongliang LI ; Bingqian YE ; Jiping TIAN ; Bofan WANG ; Yiwen ZHA ; Shuying ZHENG ; Tan MA ; Wenwen ZHUANG ; Won Sun PARK ; Jingyan LIANG
The Korean Journal of Physiology and Pharmacology 2025;29(2):245-255
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR –/–mice given high-fat diet to investigate the effects of monotropein on atherosclerosis.Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
6.Recent advances in lamellar liquid crystal emulsification methods encapsulating natural active substances for functional cosmetics
Yi ZHANG ; Wei CHEN ; Yan-qi HAN ; Qian-wen SUN ; Yue GAO ; Jun YE ; Hong-liang WANG ; Li-li GAO ; Yu-ling LIU ; Yan-fang YANG
Acta Pharmaceutica Sinica 2024;59(2):350-358
Due to the high similarity with the lipid layer between human skin keratinocytes, functional cosmetics with layered liquid crystal structure prepared by liquid crystal emulsification technology encapsulating natural active substances have become a hot research topic in recent years. This type of functional cosmetic often has a fresh and natural skin feel, excellent skin barrier repair function and efficient moisturizing effect, etc., showing great potential in cosmetic application. However, the present research on the application of liquid crystal emulsification technology to functional cosmetics is still in the initial stage, and there are fewer relevant reports with reference values. Based on the mentioned above, this review provides a comprehensive summary of functional cosmetics with layered liquid crystal structures prepared by liquid crystal emulsification technology from the following aspects: the structure of human skin, the composition of lamellar liquid crystal, the advantages of liquid crystal emulsification technology containing natural active substances used in the field of functional cosmetics, the preparation process, main components, influencing factors during the preparation and the market functional cosmetics with lamellar liquid crystal structure. Finally, the prospect of the application of liquid crystal emulsification technology in functional cosmetics is presented, to provide useful references for those engaged in the research of liquid crystal emulsification technology-related functional cosmetics.
7.Allergy Associated With N-glycans on Glycoprotein Allergens
Yu-Xin ZHANG ; Rui-Jie LIU ; Shao-Xing ZHANG ; Shu-Ying YUAN ; Yan-Wen CHEN ; Yi-Lin YE ; Qian-Ge LIN ; Xin-Rong LU ; Yong-Liang TONG ; Li CHEN ; Gui-Qin SUN
Progress in Biochemistry and Biophysics 2024;51(5):1023-1033
Protein as the allergens could lead to allergy. In addition, a widespread class of allergens were known as glycans of N-glycoprotein. N-glycoprotein contained oligosaccharide linked by covalent bonds with protein. Recently,studies implicated that allergy was associated with glycans of heterologous N-glycoprotein found in food, inhalants, insect toxins, etc. The N-glycan structure of N-glycoprotein allergen has exerted an influence on the binding between allergens and IgE, while the recognition and presentation of allergens by antigen-presenting cells (APCs) were also affected. Some researches showed thatN-glycan structure of allergen was remodeled by N-glycosidase, such as cFase I, gpcXylase, as binding of allergen and IgE partly decreased. Thus, allergic problems caused by N-glycoproteins could potentially be solved by modifying or altering the structure ofN-glycoprotein allergens, addressing the root of the issue. Mechanism of N-glycans associated allergy could also be elaborated through glycosylation enzymes, alterations of host glycosylation. This article hopes to provide a separate insight for glycoimmunology perspective, and an alternative strategy for clinical prevention or therapy of allergic diseases.
8.The role of PINK1/Parkin-mediated mitophagy in mechanical imbalance-induced endplate cartilage degeneration
Quan ZHENG ; Ming-Fan WU ; Song SHAO ; Liang-Ye SUN ; Jun-Sheng XU
Journal of Regional Anatomy and Operative Surgery 2024;33(3):189-193
Objective To detect the changes of mitophagy level in rats with endplate cartilage degeneration induced by spinal instability,and explore the role of PINK1/Parkin-mediated mitophagy in endplate cartilage and intervertebral disc degeneration.Methods The rat spinal instability model was established by surgically removing the superspinal and interspinal ligaments of L2 to L5,and cleaning the bilateral articular processes of the L2 to L5.Eighteen SD rats were divided into the normal group,the degenerative group,and the carbonyl cyanide 3-chlorophenylhydrazone(CCCP)group,with 6 rats in each group.The rats in the normal group had no special treatment,the rats in the degenerative group constructed a rat spinal instability model,and the rats in the CCCP group were injected with 5 μL of CCCP(10 μmol/L)in the intervertebral disc after the construction of spinal instability model.The changes of histomorphology in the endplate cartilage and intervertebral disc were abserved by HE staining,and the change of extracellular matrix of endplate cartilage was observed by safranin O-fast green staining.RT-PCR detected the mRNA expression of type Ⅱ collagen(COL-2A),aggrecan(ACAN),PINK1 and Parkin in each group.The changes of the protein expression levels of COL-2A,ACAN,PINK1,Parkin and mitochondrial membrane proteins of Tomm20 and Timm23 were detected by Western blot.Results Compared with the normal group,the intervertebral disc nucleus pulposus of rats in the degenerative group was significantly destroyed and the secretion of extracellular matrix of endplate chondrocytes decreased;while the structure of intervertebral discs for rats in the CCCP group was more intact,and the secretion of extracellular matrix of endplate chondrocytes was significantly increased compared with that in the degenerative group.Compared with the normal group,the expression of COL-2A and ACAN in endplate cartilage tissues of rats in the degenerative group were significantly down-regulated(P<0.05),the expression of mitochon-drial autophagy-related genes of PINK1 and Parkin were significantly decreased(P<0.05),and the expression of mitochondrial membrane proteins of Tomm20 and Timm23 were increased(P<0.05).Compared with the degenerative group,the expression of COL-2A,ACAN,PINKI and Parkin in the endplate cartilage tissue of rats in the CCCP group were significantly up-regulated(P<0.05),and the protein levels of Tomm20 and Timm23 were significantly down-regulated(P<0.05).Conclusion Rat spinal instability leads to a decrease level of mitophagy mediated by PINK1/Parkin signaling pathway in endplate cartilage,thereby inducing endplate cartilage and intervertebral disc degeneration,and the activation of mitophagy can significantly reduce endplate cartilage and intervertebral disc degeneration.
9.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
10.Necessity of slit-lamp training during ophthalmology clerkships from the perspective of medical students
Xuan-Wei LIANG ; Yu-Xian ZOU ; Shu LIU ; Zi-Wei MENG ; Xin-Yue YU ; Ye-Hong ZHUO ; Rong-Xin CHEN
International Eye Science 2023;23(1):4-9
AIM: To evaluate the necessity of slit-lamp biomicroscopy(referred to here as “slit-lamp”)training from the student's perspective and reach a consensus on slit-lamp training in medical students during ophthalmology clerkship.METHODS: A controlled before-after clerkship study was performed on 117 students of the class of 2017 enrolled in clinical medicine at Sun Yat-sen University. All medical students underwent slit-lamp training during ophthalmology clerkship. We evaluated the students' cognition, perceived need and recommendations for slit-lamp teaching, using a self-completed questionnaire survey and compared the students' scores in these aspects before and after their ophthalmology clerkships. Additionally, the efficiency of slit-lamp training was evaluated by subjective student assessment after the ophthalmology clerkship. Each item was scored on a five-point Likert Scale. Statistical analysis was performed by IBM SPSS(Version 20.0; SPSS Inc., Chicago, IL, USA).RESULTS: A total of 116(99.1%)medical students completed the survey. The average score before clerkship was 19.99±3.03, which indicated a high level of cognition regarding slit-lamp utility; However, this score significantly increased to 22.97±2.37 after clerkship(P<0.001). The average score regarding perceived need was also higher for post-clerkship students than for pre-clerkship students(24.62±3.15 vs. 23.60±2.36, P=0.009). Moreover, 86.2% of post-clerkship students reported that hands-on slit-lamp practice could help promote clerkship quality. More than three-quarters of the surveyed students tended to agree that slit-lamp practice time should be increased(76.7% and 77.6% before and after clerkship, respectively).CONCLUSION: A hands-on approach to slit-lamp training is more favored by medical students in ophthalmology clerkships, and this training should be recommended in ophthalmology clerkships given its potential usefulness for improving clerkship quality.

Result Analysis
Print
Save
E-mail