1.Target of neohesperidin in treatment of osteoporosis and its effect on osteogenic differentiation of bone marrow mesenchymal stem cells
Zhenyu ZHANG ; Qiujian LIANG ; Jun YANG ; Xiangyu WEI ; Jie JIANG ; Linke HUANG ; Zhen TAN
Chinese Journal of Tissue Engineering Research 2025;29(7):1437-1447
BACKGROUND:Previous studies have found that neohesperidin can delay bone loss in ovariectomized mice and has the potential to treat osteoporosis,but its specific mechanism of action remains to be explored. OBJECTIVE:To explore the key targets and possible mechanisms of neohesperidin in the treatment of osteoporosis based on bioinformatics and cell experiments in vitro. METHODS:The gene expression dataset related to osteoporosis was obtained from GEO database,and the differentially expressed genes were screened and analyzed in R language.The osteoporosis-related targets were screened from GeneCards and DisGeNET databases,and the neohesperidin-related targets were screened from ChEMBL and PubChem databases,and the common targets were obtained by intersection of the three.The String database was used to construct the PPI network of intersection genes,and the key targets were screened.The DAVID database was used for GO and KEGG enrichment analysis.The AutoDock software was used to verify the molecular docking between the neohesperidin and the target protein.The effect of neohesperidin on osteogenic differentiation of C57 mouse bone marrow mesenchymal stem cells was detected.Complete medium was used as blank control group;osteogenic induction medium was used as the control group;and osteogenic induction medium containing different concentrations of neohesperidin(25,50 μmol/L)was used as experimental group.The expression of alkaline phosphatase,the degree of mineralization,the expression of osteogenic-related genes and target genes during osteogenic differentiation of cells were measured at corresponding time points. RESULTS AND CONCLUSION:(1)9 253 differentially expressed genes,2 161 osteoporosis-related targets,and 326 neohesperidin-related targets were screened.There were 53 common targets among the three.All 53 genes were up-regulated in osteoporosis samples.The PPI network screened the target gene PRKACA of research significance.GO function and KEGG pathway enrichment analysis showed that neohesperidin's treatment of osteoporosis through PRKACA target mainly depended on biological processes such as protein phosphorylation and protein autophosphorylation,acting on endocrine resistance,proteoglycan in cancer,and estrogen signaling pathway to play a therapeutic role.Molecular docking results showed that neohesperidin had a certain binding ability to the protein corresponding to the target PRKACA.(2)The results of alkaline phosphatase staining showed that neohesperidin could promote the expression of alkaline phosphatase in the early stage of osteogenic differentiation of mesenchymal stem cells.Alizarin red staining showed that neohesperidin could promote the mineralization of osteogenic differentiation of mesenchymal stem cells.RT-qPCR results showed that neohesperidin could increase the mRNA expression of alkaline phosphatase,PRKACA,and osteocalcin.(3)These results indicate that neohesperidin may promote osteogenic differentiation through PRKACA target on the estrogen signaling pathway to prevent and treat osteoporosis.
2.Carnosic acid inhibits osteoclast differentiation by inhibiting mitochondrial activity
Haishan LI ; Yuheng WU ; Zixuan LIANG ; Shiyin ZHANG ; Zhen ZHANG ; Bin MAI ; Wei DENG ; Yongxian LI ; Yongchao TANG ; Shuncong ZHANG ; Kai YUAN
Chinese Journal of Tissue Engineering Research 2025;29(2):245-253
BACKGROUND:Carnosic acid,a bioactive compound found in rosemary,has been shown to reduce inflammation and reactive oxygen species(ROS).However,its mechanism of action in osteoclast differentiation remains unclear. OBJECTIVE:To investigate the effects of carnosic acid on osteoclast activation,ROS production,and mitochondrial function. METHODS:Primary bone marrow-derived macrophages from mice were extracted and cultured in vitro.Different concentrations of carnosic acid(0,10,15,20,25 and 30 μmol/L)were tested for their effects on bone marrow-derived macrophage proliferation and toxicity using the cell counting kit-8 cell viability assay to determine a safe concentration.Bone marrow-derived macrophages were cultured in graded concentrations and induced by receptor activator of nuclear factor-κB ligand for osteoclast differentiation for 5-7 days.The effects of carnosic acid on osteoclast differentiation and function were then observed through tartrate-resistant acid phosphatase staining,F-actin staining,H2DCFDA probe and mitochondrial ROS,and Mito-Tracker fluorescence detection.Western blot and RT-PCR assays were subsequently conducted to examine the effects of carnosic acid on the upstream and downstream proteins of the receptor activator of nuclear factor-κB ligand-induced MAPK signaling pathway. RESULTS AND CONCLUSION:Tartrate-resistant acid phosphatase staining and F-actin staining showed that carnosic acid dose-dependently inhibited in vitro osteoclast differentiation and actin ring formation in the cell cytoskeleton,with the highest inhibitory effect observed in the high concentration group(30 μmol/L).Carnosic acid exhibited the most significant inhibitory effect during the early stages(days 1-3)of osteoclast differentiation compared to other intervention periods.Fluorescence imaging using the H2DCFDA probe,mitochondrial ROS,and Mito-Tracker demonstrated that carnosic acid inhibited cellular and mitochondrial ROS production while reducing mitochondrial membrane potential,thereby influencing mitochondrial function.The results of western blot and RT-PCR revealed that carnosic acid could suppress the expression of NFATc1,CTSK,MMP9,and C-fos proteins associated with osteoclast differentiation,and downregulate the expression of NFATc1,Atp6vod2,ACP5,CTSK,and C-fos genes related to osteoclast differentiation.Furthermore,carnosic acid enhanced the expression of antioxidant enzyme proteins and reduced the generation of ROS during the process of osteoclast differentiation.Overall,carnosic acid exerts its inhibitory effects on osteoclast differentiation by inhibiting the phosphorylation modification of the P38/ERK/JNK protein and activating the MAPK signaling pathway in bone marrow-derived macrophages.
3.Short-term efficacy of oblique lateral interbody fusion combined with lateral plate fixation in treatment of single-level lumbar degenerative disease
Xiaoyin LIU ; Jianqun ZHANG ; Zhen CHEN ; Simin LIANG ; Zhiqiang WANG ; Zongjun MA ; Rong MA ; Zhaohui GE
Chinese Journal of Tissue Engineering Research 2025;29(3):531-537
BACKGROUND:Stand-alone oblique lateral interbody fusion has a high rate of complications of fusion segment sink.Oblique lateral interbody fusion with posterior fixation can provide stable support,but intraoperative position changes and double incisions weaken the advantages of this technique.Oblique lateral interbody fusion combined with lateral plate fixation can achieve one-stage decompression in the same incision,while the lateral internal fixation provides stable support. OBJECTIVE:To analyze the short-term efficacy of oblique lateral interbody fusion combined with lateral plate fixation in the treatment of single-level lumbar degenerative disease. METHODS:The clinical data of 34 patients with single-level lumbar degenerative disease treated with oblique lateral interbody fusion combined with lateral plate fixation were collected from May 2020 to October 2022.Among them,14 were males and 20 were females aged from 41 to 72 years at the mean age of(58.6±9.9)years.There were 11 cases of lumbar spondylolisthesis(Ⅰ°),7 cases of lumbar disc herniation with segmental instability,and 16 cases of lumbar spinal stenosis.Operation time,blood loss,and complications were recorded.Visual analog scale scores of lumbago,radiative pain of both lower limbs,and Oswestry disability index scores were evaluated before surgery,3 months after surgery,and the last follow-up.Dural sac cross-sectional area,intervertebral height,and intervertebral fusion were measured and observed. RESULTS AND CONCLUSION:(1)The 34 patients were followed up for 14-36 months,with an average of(21.3±5.2)months.(2)The operation time ranged from 50 to 92 minutes,with an average of(68.5±11.1)minutes.Intraoperative blood loss was 50-170 mL,with an average of(71.6±25.3)mL.(3)Compared with the preoperative results,the visual analog scale scores and Oswestry disability index scores were significantly decreased at 3 months after surgery and at the last follow-up(P<0.001),and the maximum Oswestry disability index scores were improved by nearly 50%.(4)Bone fusion was achieved in all patients during half-year follow-up.The overall complication rate was 21%(7/34),including 1 case of plate displacement,3 cases of cage subsidence,1 case of psoas weakness,and 2 cases of anterior thigh pain.(5)It is concluded that oblique lateral interbody fusion combined with lateral plate fixation for the treatment of lumbar degenerative diseases has the characteristics of less blood loss,short operation time,rapid postoperative recovery,and significant short-term clinical efficacy with the stable support to a certain extent.The long-term curative effect needs further follow-up observation.
4.Application and development of pulsed electric field ablation in the treatment of atrial fibrillation
Zhen WANG ; Ming LIANG ; Jie ZHANG ; Jingyang SUN ; Yaling HAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):270-276
With the continuous development of China's aging society and the prevalence of unhealthy lifestyles, the incidence of cardiovascular disease in China has been increasing in recent years. Among them, atrial fibrillation (AF) is the most common arrhythmia disease. In recent years, pulsed field ablation (PFA) has been continuously applied to AF treatment as a novel treatment. This paper first introduces the principle of PFA applied to AF treatment, and introduces the research progress of PFA in different directions, such as the comparison of different ablation methods, the study of physical parameters, the study of ablation area, the study of tissue specificity and clinical research. Then, the clinical prior research of PFA is discussed, including the use of simulation software to obtain the simulation effect of different parameters, the evaluation of ablation effect during animal research, and finally the current AF treatment. Various prior studies and clinical studies are summarized, and suggestions are made for the shortcomings found in the study of AF treatment and the future research direction is prospected.
5.Formulation and interpretation of the Guidelines for the Pharmacist-managed Clinics Service and Document Writing and Usage(Reference)
Lijuan YANG ; Quanzhi LI ; Kejing WANG ; Xiaofen YE ; Zining WANG ; Xuelian YAN ; Liang HUANG ; Juan LI ; Jiancun ZHEN
China Pharmacy 2025;36(11):1301-1305
The writing of pharmacist-managed clinics documents (hereinafter referred to as “outpatient medication record”) is a necessary part of pharmacist-managed clinics service. Outpatient medication record is an important carrier to reflect the quality of pharmacist-managed clinics service. The Chinese Hospital Association Pharmaceutical Specialized Committee was entrusted by the Pharmaceutical Administration Department of the National Health Commission to lead the formulation of the Guidelines for the Pharmacist-managed Clinics Service and Document Writing and Usage (Reference) (hereinafter referred to as Guidelines) according to the compilation method of group standards and the technical route of “documentation combing→framework establishment→draft writing→opinion collection→Guidelines formation”. The Guidelines standardizes the basic requirements of pharmacist-managed clinics record management and the basic content of record, and provides a general template and two specialized templates including pregnant and lactating pharmacist-managed clinics record template and cough and asthma pharmacist-managed clinics record template, which provides a reference for medical institutions to write pharmacist-managed clinics record. This paper introduces the formulation process of Guidelines and analyzes the key contents of Guidelines, which is helpful for the application practice of Guidelines and further improves the quality of pharmacist-managed clinics work.
6.Untargeted Metabolomics Analysis of Demyelination in the Brain of Balb/c Mice Infected by Angiostrongylus cantonensis
Zhen NIU ; Xiaojie WU ; Liang YANG ; Zhixuan MA ; Junxiong YANG ; Ying FENG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(2):293-300
ObjectiveTo investigate the demyelination induced by Angiostrongylus cantonensis (AC) infection in the brain of Balb/c mice and analyze the untargeted metabolomic changes in the corpus callosum, aiming to elucidate the underlying mechanisms. MethodsBalb/c mice were randomly assigned to a control group (n=6) and an infection group (n=6). The infection group was orally administered 30 third-stage larvae of AC, while the control group received an equal volume of saline. Body weight, visual function, and behavioral scores were measured on post-infection 3, 6, 9, 12, 15, 18, and 21 days to assess neurological alterations. After 21 days, brain tissues were harvested for immunofluorescence staining, hematoxylin-eosin (HE) staining, and transmission electron microscopy to examine morphological changes in brain myelin and retina. Metabolomics analysis was performed, and differential metabolites were identified using volcano plots and heatmaps. The distribution of fold changes and bar charts were used to profile the key metabolites. These differential metabolites were then subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and regulatory network analysis. ResultsOn the 9th day after AC infection, Balb/c mice showed a decline in neurological behavioral scores (P<0.05). By day 15, visual scores decreased (P<0.05), and by day 21, significant weight loss (P<0.001) and mortality were observed. Concurrently, transmission electron microscopy and immunofluorescence staining revealed significant myelin damage in the corpus callosum and a marked reduction in oligodendrocytes (P<0.001). HE staining showed severe retinal ganglion cell damage. Metabolomic analysis revealed that glycerophospholipids were the most abundant differential metabolites, with steroids and sphingolipids being relatively less abundant. Cholesteryl ester CE (20:2) was significantly upregulated (P<0.001), while phosphatidylmethanol (18:0_18:1) was significantly downregulated (P<0.01). KEGG enrichment and regulatory network analyses demonstrated that the differential metabolites were mainly enriched in metabolic pathways like steroid biosynthesis, bile secretion, and cholesterol metabolism, and were involved in key metabolic pathways such as sphingolipid metabolism, neural signal regulation, and glycerophospholipid metabolism. ConclusionsAC infection affects the metabolic state of mice via multiple pathways, modifying the levels of metabolites crucial for myelination and myelin stability. Demyelination may be closely linked to the disruption of these key metabolic pathways, particularly the dysregulation of cholesterol and sphingolipid metabolism, potentially playing a central role in demyelination onset. Furthermore, alterations in phospholipid metabolism and abnormal nerve signaling regulation may exacerbate myelin damage.
7.Study on Kinetic and Static Tasks With Different Resistance Coefficients in Post-stroke Rehabilitation Training Based on Functional Near-infrared Spectroscopy
Ling-Di FU ; Jia-Xuan DOU ; Ting-Ting YING ; Li-Yong YIN ; Min TANG ; Zhen-Hu LIANG
Progress in Biochemistry and Biophysics 2025;52(7):1890-1903
ObjectiveFunctional near-infrared spectroscopy (fNIRS), a novel non-invasive technique for monitoring cerebral activity, can be integrated with upper limb rehabilitation robots to facilitate the real-time assessment of neurological rehabilitation outcomes. The rehabilitation robot is designed with 3 training modes: passive, active, and resistance. Among these, the resistance mode has been demonstrated to yield superior rehabilitative outcomes for patients with a certain level of muscle strength. The control modes in the resistance mode can be categorized into dynamic and static control. However, the effects of different control modes in the resistance mode on the motor function of patients with upper limb hemiplegia in stroke remain unclear. Furthermore, the effects of force, an important parameter of different control modes, on the activation of brain regions have rarely been reported. This study investigates the effects of dynamic and static resistance modes under varying resistance levels on cerebral functional alterations during motor rehabilitation in post-stroke patients. MethodsA cohort of 20 stroke patients with upper limb dysfunction was enrolled in the study, completing preparatory adaptive training followed by 3 intensity-level tasks across 2 motor paradigms. The bilateral prefrontal cortices (PFC), bilateral primary motor cortices (M1), bilateral primary somatosensory cortices (S1), and bilateral premotor and supplementary motor cortices (PM) were examined in both the resting and motor training states. The lateralization index (LI), phase locking value (PLV), network metrics were employed to examine cortical activation patterns and topological properties of brain connectivity. ResultsThe data indicated that both dynamic and static modes resulted in significantly greater activation of the contralateral M1 area and the ipsilateral PM area when compared to the resting state. The static patterns demonstrated a more pronounced activation in the contralateral M1 in comparison to the dynamic patterns. The results of brain network analysis revealed significant differences between the dynamic and resting states in the contralateral PFC area and contralateral M1 area (F=4.709, P=0.038), as well as in the contralateral PM area and ipsilateral M1 area (F=4.218, P=0.049). Moreover, the findings indicated a positive correlation between the activation of the M1 region and the increase in force in the dynamic mode, which was reversed in the static mode. ConclusionBoth dynamic and static resistance training modes have been demonstrated to activate the corresponding brain functional regions. Dynamic resistance modes elicit greater oxygen changes and connectivity to the region of interest (ROI) than static resistance modes. Furthermore, the effects of increasing force differ between the two modes. In patients who have suffered a stroke, dynamic modes may have a more pronounced effect on the activation of exercise-related functional brain regions.
8.Effects of cerium oxide nanoenzyme-gelatin methacrylate anhydride hydrogel in the repair of infected full-thickness skin defect wounds in mice
Ya'nan GU ; Xianghao XU ; Yanping WANG ; Yutao LI ; Zhen LIANG ; Zhou YU ; Yizhi PENG ; Baoqiang SONG
Chinese Journal of Burns 2024;40(2):131-140
Objective:To investigate the effects of cerium oxide nanoenzyme-gelatin methacrylate anhydride (GelMA) hydrogel (hereinafter referred to as composite hydrogel) in the repair of infected full-thickness skin defect wounds in mice.Methods:This study was an experimental study. Cerium oxide nanoenzyme with a particle size of (116±9) nm was prepared by hydrothermal method, and GelMA hydrogel with porous network structure and good gelling performance was also prepared. The 25 μg/mL cerium oxide nanoenzyme which could significantly promote the proliferation of human skin fibroblasts and had high superoxide dismutase activity was screened out. It was added to GelMA hydrogel to prepare composite hydrogel. The percentage of cerium oxide nanoenzyme released from the composite hydrogel was calculated after immersing it in phosphate buffer solution (PBS) for 3 and 7 d. The red blood cell suspension of mice was divided into PBS group, Triton X-100 group, cerium oxide nanoenzyme group, GelMA hydrogel group, and composite hydrogel group, which were treated with corresponding solution. The hemolysis of red blood cells was detected by microplate reader after 1 h of treatment. The bacterial concentrations of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli were determined after being cultured with PBS, cerium oxide nanoenzyme, GelMA hydrogel, and composite hydrogel for 2 h. The sample size in all above experiments was 3. Twenty-four 8-week-old male BALB/c mice were taken, and a full-thickness skin defect wound was prepared in the symmetrical position on the back and infected with MRSA. The mice were divided into control group without any drug intervention, and cerium oxide nanoenzyme group, GelMA hydrogel group, and composite hydrogel group applied with corresponding solution, with 6 mice in each group. The wound healing was observed on 3, 7, and 14 d after injury, and the remaining wound areas on 3 and 7 d after injury were measured (the sample size was 5). The concentration of MRSA in the wound exudation of mice on 3 d after injury was measured (the sample size was 3), and the blood flow perfusion in the wound of mice on 5 d after injury was observed using a laser speckle flow imaging system (the sample size was 6). On 14 d after injury, the wound tissue of mice was collected for hematoxylin-eosin staining to observe the newly formed epithelium and for Masson staining to observe the collagen situation (the sample size was both 3). Results:After immersion for 3 and 7 d, the release percentages of cerium oxide nanoenzyme in the composite hydrogel were about 39% and 75%, respectively. After 1 h of treatment, compared with that in Triton X-100 group, the hemolysis of red blood cells in PBS group, GelMA hydrogel group, cerium oxide nanoenzyme group, and composite hydrogel group was significantly decreased ( P<0.05). Compared with that cultured with PBS, the concentrations of MRSA and Escherichia coli cultured with cerium oxide nanoenzyme, GelMA hydrogel, and composite hydrogel for 2 h were significantly decreased ( P<0.05). The wounds of mice in the four groups were gradually healed from 3 to 14 d after injury, and the wounds of mice in composite hydrogel group were all healed on 14 d after injury. On 3 and 7 d after injury, the remaining wound areas of mice in composite hydrogel group were (29±3) and (13±5) mm 2, respectively, which were significantly smaller than (56±12) and (46±10) mm 2 in control group and (51±7) and (38±8) mm 2 in cerium oxide nanoenzyme group (with P values all <0.05), but was similar to (41±5) and (24±9) mm 2 in GelMA hydrogel group (with P values both >0.05). On 3 d after injury, the concentration of MRSA on the wound of mice in composite hydrogel group was significantly lower than that in control group, cerium oxide nanoenzyme group, and GelMA hydrogel group, respectively (with P values all <0.05). On 5 d after injury, the volume of blood perfusion in the wound of mice in composite hydrogel group was significantly higher than that in control group, cerium oxide nanoenzyme group, and GelMA hydrogel group, respectively ( P<0.05). On 14 d after injury, the wound of mice in composite hydrogel group basically completed epithelization, and the epithelization was significantly better than that in the other three groups. Compared with that in the other three groups, the content of collagen in the wound of mice in composite hydrogel group was significantly increased, and the arrangement was also more orderly. Conclusions:The composite hydrogel has good biocompatibility and antibacterial effect in vivo and in vitro. It can continuously sustained release cerium oxide nanoenzyme, improve wound blood perfusion in the early stage, and promote wound re-epithelialization and collagen synthesis, therefore promoting the healing of infected full-thickness skin defect wounds in mice.
9.Comparison of different internal fixation systems in geriatric humerus surgical neck fractures
Xiang-Rong LU ; Da-Ming LU ; Liang-Hua JIANG ; Zhen-Liang LU ; Xue-Ping XU
Journal of Regional Anatomy and Operative Surgery 2024;33(9):764-767
Objective To compare and analyze the clinical outcomes of the ortho-bridge system(OBS)and the proximal humeral internal locking system(PHILOS)for the treatment of humeral surgical neck fractures(HSNF)in the elderly.Methods A retrospective analysis was conducted on the clinical data of 80 elderly patients with HSNF admitted to our hospital.Patients were divided into the two groups based on different surgical methods,among which 30 patients treated with OBS were included into the OBS group and 50 patients treated with PHILOS were included into the PHILOS group.The operation indicators,postoperative recovery indicators,serum bone metabolism indexes[osteocalcin(OCN),N-terminal propeptide of type Ⅰ precollagen(PINP)and alkaline phosphatase(ALP)],callus score,shoulder joint function scores[Constant-Murley scale(CMS)score and Neer score],and incidence of complications of the two groups were compared.Results The operation time in the OBS group was longer than that in the PHILOS group,and the fracture healing time was shorter than that in the PHILOS group(P<0.05).The levels of serum OCN,PINP,and ALP 1 month and 3 months after surgery in the OBS group were higher than those in the PHILOS group(P<0.05).The callus scores 1 month,2 months,and 3 months after surgery in the OBS group were higher than those in the PHILOS group(P<0.05).The CMS and Neer scores 1 month and 3 months after surgery in the OBS group were higher than those in the PHILOS group(P<0.05).The incisions of patients in the two groups recovered well after surgery,achieving gradeⅠ healing without complications such as wound infection or nonunion.Conclusion Compared with PHILOS,the application of OBS in the treatment of elderly patients with HSNF has a better short-term clinical outcome,and can promote fracture healing.
10.Immune Reconstitution after BTKi Treatment in Chronic Lymphocytic Leukemia
Yuan-Li WANG ; Pei-Xia TANG ; Kai-Li CHEN ; Guang-Yao GUO ; Jin-Lan LONG ; Yang-Qing ZOU ; Hong-Yu LIANG ; Zhen-Shu XU
Journal of Experimental Hematology 2024;32(1):1-5
Objective:To analyze the immune reconstitution after BTKi treatment in patients with chronic lymphocytic leukemia(CLL).Methods:The clinical and laboratorial data of 59 CLL patients admitted from January 2017 to March 2022 in Fujian Medical University Union Hospital were collected and analyzed retrospectively.Results:The median age of 59 CLL patients was 60.5(36-78).After one year of BTKi treatment,the CLL clones(CD5+/CD19+)of 51 cases(86.4%)were significantly reduced,in which the number of cloned-B cells decreased significantly from(46±6.1)× 109/L to(2.3±0.4)× 109/L(P=0.0013).But there was no significant change in the number of non-cloned B cells(CD19+minus CD5+/CD19+).After BTKi treatment,IgA increased significantly from(0.75±0.09)g/L to(1.31±0.1)g/L(P<0.001),while IgG and IgM decreased from(8.1±0.2)g/L and(0.52±0.6)g/L to(7.1±0.1)g/L and(0.47±0.1)g/L,respectively(P<0.001,P=0.002).BTKi treatment resulted in a significant change in T cell subpopulation of CLL patients,which manifested as both a decrease in total number of T cells from(2.1±0.1)× 109/L to(1.6±0.4)× 109/L and NK/T cells from(0.11±0.1)× 109/L to(0.07±0.01)× 109/L(P=0.042,P=0.038),both an increase in number of CD4+cells from(0.15±6.1)× 109/L to(0.19±0.4)× 109/L and CD8+cells from(0.27±0.01)× 109/L to(0.41±0.08)× 109/L(both P<0.001).BTKi treatment also up-regulated the expression of interleukin(IL)-2 while down-regulated IL-4 and interferon(IFN)-γ.However,the expression of IL-6,IL-10,and tumor necrosis factor(TNF)-α did not change significantly.BTKi treatment could also restored the diversity of TCR and BCR in CLL patients,especially obviously in those patients with complete remission(CR)than those with partial remission(PR).Before and after BTKi treatment,Shannon index of TCR in patients with CR was 0.02±0.008 and 0.14±0.001(P<0.001),while in patients with PR was 0.01±0.03 and 0.05±0.02(P>0.05),respectively.Shannon index of BCR in patients with CR was 0.19±0.003 and 0.33±0.15(P<0.001),while in patients with PR was 0.15±0.009 and 0.23±0.18(P<0.05),respectively.Conclusions:BTKi treatment can shrink the clone size in CLL patients,promote the expression of IgA,increase the number of functional T cells,and regulate the secretion of cytokines such as IL-2,IL-4,and IFN-γ.BTKi also promote the recovery of diversity of TCR and BCR.BTKi treatment contributes to the reconstitution of immune function in CLL patients.

Result Analysis
Print
Save
E-mail