1.Connotation and Application of WU Jutong's Theory of "Treating All Bi (痹) Diseases through Taiyin"
Liang MENG ; Shuai KANG ; Quan JIN ; Qiancheng WEI
Journal of Traditional Chinese Medicine 2025;66(1):102-108
The Medical Cases of WU Jutong (《吴鞠通医案》) proposes the principle of "treating all Bi (痹) diseases through taiyin", which forms the basis for analyzing WU Jutong's understanding of the causes, mechanisms, and treatments of Bi (痹) diseases, providing a reference for clinical diagnosis and treatment. Through an interpretation of the phrase "treating all Bi (痹) diseases through taiyin", it is suggested that Bi (痹) diseases is primarily caused by dampness, necessitating a focus on spleen and lung in treatment. WU emphasized four main causes of Bi (痹) diseases (wind, cold, dampness, and heat), with dampness being the predominant factor. The disease location is initially in lung, for which external dampness invades lung first, and internal dampness obstructs the source of water metabolism, impeding lung qi and qi failing to disperse, then dampness further accumulates in the joints, leading to Bi (痹) diseases. WU Jutong proposed the modified Mufangji Decoction (木防己汤) as the foundational prescription for treating Bi (痹) diseases. By comparing the similarities and differences between the modified and original Mufangji Decoction, and analyzing the adjustments in herbal prescriptions, the clinical characteristic of "treating all Bi (痹) diseases through taiyin" is further substantiated.
2.Palpitations, Shortness of Breath, Weakness in Limbs, Edema, and Dyspnea: A Rare Inflammatory Myopathy with Positive Aniti-mitochondrial Antibodies and Cardiac Involvement
Chunsu LIANG ; Xuchang ZHANG ; Ning ZHANG ; Lin KANG ; Xiaohong LIU ; Jiaqi YU ; Yingxian LIU ; Lin QIAO ; Yanli YANG ; Xiaoyi ZHAO ; Ruijie ZHAO ; Na NIU ; Xuelian YAN
Medical Journal of Peking Union Medical College Hospital 2025;16(1):248-255
This article presents a case study of a patient who visited the Geriatric Department of Peking Union Medical College Hospital due to "palpitations, shortness of breath for more than 2 years, limb weakness for 6 months, edema, and nocturnal dyspnea for 2 months". The patient exhibited decreased muscle strength in the limbs and involvement of swallowing and respiratory muscles, alongside complications of heart failure and various arrhythmias which were predominantly atrial. Laboratory tests revealed the presence of multiple autoantibodies and notably anti-mitochondrial antibodies. Following a comprehensive multidisciplinary evaluation, the patient was diagnosed with anti-mitochondrial antibody-associated inflammatory myopathy. Treatment involved a combination of glucocorticoids and immunosuppressants, along with resistance exercises for muscle strength and rehabilitation training for lung function, resulting in significant improvement of clinical symptoms. The case underscores the importance of collaborative multidisciplinary approaches in diagnosing and treating rare diseases in elderly patients, where careful consideration of clinical manifestations and subtle abnormal clinical data can lead to effective interventions.
3.Establishment and stress analysis of a finite element model for adolescent cervical disc herniation
Yuxin ZHAO ; Liang LIANG ; Feng JIN ; Yangyang XU ; Zhijie KANG ; Yuan FANG ; Yujie HE ; Xing WANG ; Haiyan WANG ; Xiaohe LI
Chinese Journal of Tissue Engineering Research 2025;29(3):448-454
BACKGROUND:Cervical disc herniation can cause pain in the neck and shoulder area,as well as radiating pain in the upper limbs.The incidence rate is increasing year by year and tends to affect younger individuals.Fully understanding the biomechanical characteristics of the cervical spine in adolescents is of great significance for preventing and delaying the onset of cervical disc herniation in this age group. OBJECTIVE:To reconstruct cervical spine models for both healthy adolescents and adolescent patients with cervical disc herniation utilizing finite element analysis techniques,to analyze the motion range of the C1-T1 cervical vertebrae as well as the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and the cartilage of the small joints. METHODS:A normal adolescent's cervical spine and an adolescent patient with cervical disc herniation were selected in this study.The continuous scan cervical spine CT raw image data were imported into Mimics 21.0 in DICOM format.The C1-T1 vertebrae were reconstructed separately.Subsequently,the established models were imported into the 3-Matic software for disc reconstruction.The perfected models were then imported into Hypermesh software for meshing of the vertebrae,nucleus pulposus,annulus fibrosus,and ligaments,creating valid geometric models.After assigning material properties,the final models were imported into ABAQUS software to observe the joint motion range of the C1-C7 cervical vertebrae segments under different conditions,and to analyze the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and small joint cartilage of each cervical spine segment. RESULTS AND CONCLUSION:(1)In six different conditions,the joint motion range of the C1 vertebra in the cervical spine models of both normal adolescent and adolescent patient with cervical disc herniation was higher than that of the other vertebrae.Additionally,the joint motion range of each cervical spine segment in normal adolescent was greater than that in adolescent patient with cervical disc herniation.(2)In the cervical spine model of normal adolescent,the maximum stress values in the annulus fibrosus and nucleus pulposus were found on the left side during C2-3 flexion conditions(0.43 MPa and 0.17 MPa,respectively).In the cervical spine model of adolescent patient with cervical disc herniation,the maximum stress values were found on the left side during C7-T1 flexion conditions(0.54 MPa and 0.18 MPa,respectively).(3)In the cervical spine model of normal adolescent,the maximum stress value on the endplate was found on the left side of the upper endplate of C3 during flexion conditions(1.46 MPa).In the model of adolescent patient with cervical disc herniation,the maximum stress value on the endplate was found on the left side of the lower endplate of C7 during flexion conditions(1.32 MPa).(4)In the cervical spine model of normal adolescent,the maximum stress value in the small joint cartilage was found in the C2-3 left rotation conditions(0.98 MPa).In adolescent patient with cervical disc herniation,the stress in the small joint cartilage significantly increased under different conditions,especially in C1-2,with the maximum stress found during left flexion(3.50 MPa).(5)It is concluded that compared to normal adolescent,adolescent patient with cervical disc herniation exhibits altered cervical curvature and a decrease in overall joint motion range in the cervical spine.In adolescent with cervical disc herniation,there is a significant increase in stress on the annulus fibrosus,nucleus pulposus,and endplates in the C7-T1 segment.The stress on the left articular cartilage of the C1-2 is notable.Abnormal cervical curvature may be the primary factor causing these stress changes.
4.Distribution of Traditional Chinese Medicine Syndrome Elements in Different Risk Populations of Heart Failure Complicated with Type 2 Diabetes: A Retrospective Study Based on Nomogram Model and Factor Analysis
Tingting LI ; Zhipeng YAN ; Yajie FAN ; Wenxiu LI ; Wenyu SHANG ; Yongchun LIANG ; Yiming ZUO ; Yuxin KANG ; Boyu ZHU ; Junping ZHANG
Journal of Traditional Chinese Medicine 2025;66(11):1140-1146
ObjectiveTo analyze the distribution characteristics of traditional Chinese medicine (TCM) syndrome elements in different risk populations of heart failure complicated with type 2 diabetes. MethodsClinical data of 675 type 2 diabetes patients were retrospectively collected. Lasso-multivariate Logistic regression was used to construct a clinical prediction nomogram model. Based on this, 441 non-heart failure patients were divided into a low-risk group (325 cases) and a high-risk group (116 cases) according to the median risk score of heart failure complicated with type 2 diabetes. TCM diagnostic information (four diagnostic methods) was collected for both groups, and factor analysis was applied to summarize the distribution of TCM syndrome elements in different risk populations. ResultsLasso-multivariate Logistic regression analysis identified age, disease duration, coronary heart disease, old myocardial infarction, arrhythmia, absolute neutrophil count, activated partial thromboplastin time, and α-hydroxybutyrate dehydrogenase as independent risk factors for heart failure complicated with type 2 diabetes. These were used as final predictive factors to construct the nomogram model. Model validation results showed that the area under the curve (AUC) of the receiver operating characteristic (ROC) curve for the modeling group and validation group were 0.934 and 0.935, respectively. The Hosmer-Lemeshow test (modeling group P = 0.996, validation group P = 0.121) indicated good model discrimination. Decision curve analysis showed that the curves for All and None crossed in the upper right corner, indicating high clinical utility. The low-risk and high-risk groups each obtained 14 common factors. Preliminary analysis revealed that the main disease elements in the low-risk group were qi deficiency (175 cases, 53.85%), dampness (118 cases, 36.31%), and heat (118 cases, 36.31%), with the primary locations in the spleen (125 cases, 38.46%) and lungs (99 cases, 30.46%). In the high-risk group, the main disease elements were yang deficiency (73 cases, 62.93%), blood stasis (68 cases, 58.62%), and heat (49 cases, 42.24%), with the primary locations in the kidney (84 cases, 72.41%) and heart (70 cases, 60.34%). ConclusionThe overall disease characteristics in different risk populations of type 2 diabetes patients with heart failure are a combination of deficiency and excess, with deficiency being predominant. Deficiency and heat are present throughout. The low-risk population mainly shows qi deficiency with dampness and heat, related to the spleen and lungs. The high-risk population shows yang deficiency with blood stasis and heat, related to the kidneys and heart.
5.Mechanism prediction and validation of Kaixinsan in ameliorating neuroinflammation in Alzheimer’s disease
Dandan XU ; Yongchang ZENG ; Shaoyu LIANG ; Qi LIU ; Junhong WU ; Kang HE
China Pharmacy 2025;36(12):1476-1482
OBJECTIVE To predict and validate the potential mechanisms of Kaixinsan (KXS) in ameliorating neuroinflammation in Alzheimer’s disease (AD). METHODS Network pharmacology was employed to identify core anti- inflammatory components and key inflammatory targets of KXS for AD. Gene ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and molecular docking were performed. Based on these findings, male SD rats were used to establish an AD model via chronic D-galactose induction. The effects of KXS on AD rats were evaluated, including quantitative behavioral score, learning and memory parameters (escape latency, platform crossings, platform quadrant distance and time), organ indexes (heart, liver, spleen, thymus), histopathological alterations in the hippocampus, and expressions of inflammation-related pathway proteins and their upstream/downstream regulators. RESULTS Core anti-inflammatory components of KXS for AD included gomisin B, panaxytriol, gomisin A, enhydrin, vulgarin and panaxydol, while key inflammatory targets involved nuclear factor-kappa B subunit 1( NFKB1), nuclear factor-κB p65( NF-κB p65), interleukin-1β( IL- 1β), IL-6, Toll-like receptor 4 (TLR4), tumor necrosis factor, nucleotide-binding domain leucine-rich repeat and pyrin domain- containing receptor 3 (NLRP3) and caspase-1 (CASP1). GO and KEGG pathway enrichment involved inflammatory response, phosphorylation and the NF-κB signaling pathway. Molecular docking confirmed strong binding affinities between core components and key targets. Animal experiments demonstrated that, compared to the model group, KXS significantly alleviated histopathological damage (e.g., neuronal shrinkage, reduced Nissl bodies in hippocampal CA1, CA3, and DG regions), increased organ indexes (except for liver index) and Nissl-stained positive cells, improved learning and memory performance, and reduced behavioral scores (at the 8 and 12 weeks of the experiment) and protein expression of NF- κB p65, phosphorylated NF- κB p65, TLR4, NLRP3, CASP1 and IL-1β. CONCLUSIONS KXS effectively mitigates neuroinflammation, reduces hippocampal neuronal injury, and enhances learning and memory ability in AD rats, potentially through suppressing the NF-κB signaling pathway and its upstream/ downstream regulators.
6.Obstructive sleep apnea and fundus vascular injury
Yichun WANG ; Kang ZHANG ; Ya LIANG ; Ning DING
International Eye Science 2025;25(8):1247-1252
The ocular fundus vasculature, serving as a critical window for monitoring disease progression, represents one of the primary targets of hypoxic injury. A growing body of evidence suggests associations between specific ocular vascular pathologies and sleep-disordered breathing. Obstructive sleep apnea(OSA)has been implicated in fundus lesions through its detrimental effects on the central retinal artery, retinal veins, retinal microvasculature, and choroidal vessels. Mechanistically, these effects are linked to OSA-induced intermittent hypoxia, which drives hemodynamic disturbances, oxidative stress, inflammatory responses, altered blood composition, endothelial dysfunction, and neuroendocrine/metabolic dysregulation. This review synthesizes current evidence on OSA-related retinal vascular injury and elucidates its mechanistic pathways. The goal is to identify sensitive and specific retinal vascular biomarkers to facilitate the early detection of OSA and its associated complications.
7.Theoretical Study on Intervention of Abdominal Vibration Therapy in Cancer-Related Depression
Qiuran LIANG ; Chuanbo LIU ; Kang WANG
Cancer Research on Prevention and Treatment 2025;52(7):625-629
Cancer-related depression (CRD) is a common pathological depression in the diagnosis and treatment of malignant tumors and an important factor affecting the progression and treatment of tumor diseases. Abdominal vibration therapy was developed from Professor Zang's loose vibration method. It is a set of techniques that mainly operates by vibrating the Shenque point; dredging meridians; and rubbing, pushing, and holding the abdomen. This therapy has unique advantages in the treatment of emotional diseases likely because it can stimulate the abdomen; tonify the spleen and stomach; and regulate the gut organs, the qi mechanism, and vitality. On the basis of the structure of the brain-gut axis, it regulates the inflammatory response then realizes the purpose of intervening in CRD.
8.Study on the effect and mechanism of Xinyang Tablet on myocardial ferroptosis in mice with chronic heart failure
Jinhua KANG ; Pengpeng LIANG ; Xiaoxiong ZHOU ; Ao LIU ; Zhongqi YANG ; Hongyan WU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):516-528
Objective:
Exploring the effect and mechanism of Xinyang Tablet on reduction of ferroptosis in myocardial cells from mice with chronic heart failure.
Methods:
Sixty C57BL/6J mice were randomly assigned to the sham, model, Xinyang Tablet low-dose (0.34 g/kg), Xinyang Tablet medium-dose (0.68 g/kg), Xinyang Tablet high-dose (1.36 g/kg), and perindopril (0.607 mg/kg) groups using a random number table method (10 mice in each group). Except for the sham group, all other groups underwent aortic arch constriction surgery to construct a chronic heart failure model. On the third day after completion of the modeling, each treatment group was administered the corresponding medication by gavage, while the sham and model groups were administered equal volumes of water by gavage once a day for eight consecutive weeks. After treatment, cardiac ultrasound was used to detect the structure and function of the mouse heart. Hematoxylin and eosin staining was used to detect pathological changes in mouse heart tissue. Masson staining was used to detect the proportion of fibrotic area of mouse heart tissue. Realtime fluorescence PCR was used to detect the mRNA expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), collagen 3α (Col3α), and myosin heavy chain 7 (MYH7) in mouse myocardial tissue. Transmission electron microscope was used to detect the ultrastructure of myocardial cell mitochondria. Reactive oxygen species (ROS) staining was used to detect the mean fluorescence intensity of ROS in myocardial tissue. Micro-determination was used to detect superoxide dismutase (SOD) activity in myocardial tissue. An immunofluorescence assay was used to detect the mean fluorescence intensity of phosphorylated histone deacetylase 2 (p-HDAC2) in myocardial cell. Western blotting was used to detect the protein expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), p-HDAC2, nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1), glutathione peroxidase 4 (GPX4), and cystine glutamate reverse transporter (xCT) in mouse myocardial tissue.
Results:
Compared to the sham group, the model group showed a decrease in left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS), an increase in left ventricular end-systolic diameter(LVESD) and left ventricular end-diastolic diameter (LVEDD), an increase in the proportion of cardiac fibrosis area, an increase in relative expression levels of ANP, BNP, Col3α, and MYH7 mRNA, an increase in ROS mean fluorescence intensity, a decrease in SOD activity, an increase in mean fluorescence intensity of p-HDAC2, an increase in relative expression levels of p-HDAC2 and NOX1 proteins, and a decrease in relative expression levels of Nrf2, GPX4, and xCT proteins (P<0.05). Myocardial fibrosis lesions are obvious, with disordered mitochondrial arrangement, decreased volume and shrinkage, increased membrane density, and reduced mitochondrial cristae. Compared to the model group, the LVEF and LVFS of mice in each dose group of Xinyang Tablet and the perindopril group increased, LVESD and LVEDD decreased, the proportion of fibrotic area of heart tissue decreased, the relative expression levels of ANP, BNP, Col3α, MYH7 mRNA decreased, ROS mean fluorescence intensity decreased, SOD activity increased, mean fluorescence intensity of p-HDAC2 decreased, relative expression levels of p-HDAC2 and NOX1 proteins decreased, and relative expression levels of Nrf2 and xCT proteins increased (P<0.05). Myocardial fibrosis was reduced, the mitochondrial arrangement was more regular, the mitochondria enlarged, the membrane density was reduced, and mitochondrial cristae increased. Compared to the model group, the relative expression level of the GPX4 protein in myocardial tissue increased in the Xinyang Tablet medium-, high-dose, and the perindopril groups (P<0.05).
Conclusion
Xinyang Tablet can improve ferroptosis and ventricular remodeling in mice with chronic heart failure by regulating the HDAC2-mediated Nrf2 antioxidant pathway.
9.Effects of fine particulate matter exposure on acute myocardial infarction mortality and life lost
LIANG Haiqing ; RONG Sijing ; KANG Huili ; WANG Jun
Journal of Preventive Medicine 2025;37(11):1145-1150
Objective:
To investigate the effects of fine particulate matter (PM2.5) exposure on acute myocardial infarction (AMI) mortality and years of life lost (YLL).
Methods:
Mortality data in Haizhu District, Guangzhou City from 2020 to 2024 were collected by the China Population Death Information Registration Management System and Guangdong Death Certificate Management System. Air pollution and meteorological data of the same period were obtained from the national environmental monitoring sites on the National Real-time Air Quality Release Platform and the Guangzhou Observatory, respectively. The single-pollutant model and multi-pollutant model were established by distributed lag non-linear model to analyze the effects of PM2.5 on AMI mortality and YLL.
Results:
From 2020 to 2024, there were 2 466 AMI death cases in Haizhu District, including 949 males and 1 517 females. Among them, 530 cases were aged <65 years, 494 cases were aged 65-74 years, and 1 442 cases were aged >74 years. The median daily average number of deaths was 1.3 (interquartile range, 2.0) cases, and the median daily average YLL was 16.4 (interquartile range, 24.8) person years. The median daily average mass concentration of PM2.5 was 24.3 (interquartile range, 18.0) μg/m3. In single-pollutant models, the maximum effects of PM2.5 on AMI mortality and YLL were observed at a cumulative lag of 7 days. For per 10 μg/m3 increment in the daily average concentration of PM2.5, the excess risk of AMI mortality increased by 8.793% (95%CI: 4.201% to 13.588%), and YLL increased by 2.059 (95%CI: 1.081 to 3.037) person-years. Gender-stratified analyses showed that PM2.5 significantly affected AMI mortality in males and YLL in males and females (all P<0.05). Age-stratified analyses revealed that PM2.5 significantly affected AMI mortality and YLL among residents aged <65 years and 65-74 years (all P<0.05). However, the difference between genders or the two age groups was not statistically significant (both P>0.05). In multi-pollutant models, when NO2, SO2, or O3 were introduced respectively at a cumulative lag of 7 days, the effects of PM2.5 on AMI mortality and YLL were enhanced compared to the single-pollutant model (all P<0.05). When PM10 was introduced alone or in combination with PM10, SO2, NO2, and O3, the effects of PM2.5 on AMI mortality and YLL were not statistically significant (all P>0.05).
Conclusion
Exposure to PM2.5 may increase the risk of AMI mortality and YLL, with varying effects across populations of different genders and ages.
10.Finite element model establishment and stress analysis of lumbar-sacral intervertebral disc in ankylosing spondylitis
Zhijie KANG ; Zhenhua CAO ; Yangyang XU ; Yunfeng ZHANG ; Feng JIN ; Baoke SU ; Lidong WANG ; Ling TONG ; Qinghua LIU ; Yuan FANG ; Lirong SHA ; Liang LIANG ; Mengmeng LI ; Yifei DU ; Lin LIN ; Haiyan WANG ; Xiaohe LI ; Zhijun LI
Chinese Journal of Tissue Engineering Research 2024;28(6):840-846
BACKGROUND:Ankylosing spondylitis is a chronic inflammatory disease with chronic rheumatic immunity.Soft tissue ossification and fusion and spinal stiffness can cause biomechanical changes. OBJECTIVE:To reconstruct the lumbar-sacral intervertebral disc in ankylosing spondylitis patients with lumbar kyphosis by finite element analysis,and to study the range of motion of each segment of T11-S1 and the biomechanical characteristics of annulus fibrosus and nucleus pulposus. METHODS:The imaging data were obtained from an ankylosing spondylitis patient with lumbar kyphosis.The original CT image data of continuously scanned spine were imported into Mimics 21.0 in DICOM format,and T11-S1 was reconstructed respectively.The established model was imported into 3-Matic software in the format of"Stl"to reconstruct the intervertebral disc,and the fibrous intervertebral disc model was obtained.The improved model was further imported into Hypermesh software,and the vertebra,nucleus pulposus,annulus fibrosus and ligament were mesh-divided.After the material properties were given,the model was imported into ABAQUS software to observe the range of motion of each vertebral body in seven different working conditions of T11-S1,and analyze the biomechanical characteristics of each segment of annulus fibrosus and nucleus pulposus. RESULTS AND CONCLUSION:(1)The range of motion of L1 vertebrae was higher than that of other vertebrae under six different working conditions:extension,forward flexion,rotation(left and right),and lateral flexion(left and right).The maximum range of motion was 2.18° during L1 vertebral flexion,and the minimum range of motion was 0.12° during L5 vertebral extension.(2)The annular fiber flexion at L2-L3 segments was greater than the extension(P<0.05),and the annular fiber flexion at L3-L4 and L4-L5 segments was less than the extension(P<0.05).The left rotation of L1-L2 annular fibers was greater than the right rotation(P<0.05).The left flexion of the annulus was greater than the right flexion in L1-L2,L2-L3,L3-L4,L4-L5 and L5-S1 segments(P<0.05).(3)The nucleus pulposus stresses of T11-L12,L1-L2,L2-L3,L3-L4 and L4-L5 segments in forward flexion were greater than in extension(P<0.05).The left rotation of T12-L1 and L3-L4 segments was smaller than the right rotation(P<0.05),and that of T11-T12,L1-L2,and L2-L3 segments was larger than the right rotation(P<0.05).The left flexion was larger than the right flexion in the T11-S1 segment.(4)It is concluded that in ankylosing spondylitis patients with lumbar kyphosis,the minimum range of motion of the vertebral body is located at the L5 vertebral body in extension.To prevent fractures,it is recommended to avoid exercise in the extension position.During the onset of lumbar kyphosis in patients with ankylosing spondylitis,the maximum stress of the annulus fibrosus and nucleus pulposus is located in the L1-L2 segment,which is fixed and will not alter with the change of body position.The late surgical treatment and correction of deformity should focus on releasing the pressure of the annulus fibrosus and nucleus pulposus in this segment to avoid the rupture of the annulus fibrosus and the injury of the nucleus pulposus.


Result Analysis
Print
Save
E-mail