1.Analysis of the clinical features and prognosis of neuro-Behcet′s syndrome in 5 children
Lian WANG ; Yuchun YAN ; Yilin WANG ; Liyan MA ; Yongxia TANG ; Jianming LAI
Chinese Journal of Pediatrics 2025;63(1):80-83
Objective:To investigate the clinical features and prognosis of neuro-Beh?et′s syndrome (NBS) in children.Method:The clinical, brain magnetic resonance imaging and laboratory data of 5 children with NBS diagnosed in the Department of Pediatrics, General Hospital of Ningxia Medical University and Department of Rheumatology and Immunology, Children′s Hospital Affiliated to Capital Institute of Pediatrics from April 2014 to April 2024 were analyzed retrospectively. The follow-up method was retrospective outpatient or inpatient visit to evaluate the treatment effect of NBS.Result:Among the 5 NBS cases, 2 were male and 3 were female. The age of admission ranged from 8 to 17 years, the time from onset to diagnosis was 2 days to 4 years. Two patients had dizziness, headache and convulsions during the treatment of NBS, 1 patient had disturbance of consciousness, 1 patient gradually developed aphasia, limb movement disorder, dysphagia and muscle weakness after 4 years of Behcet's syndrome, and 1 patient had no clinical symptoms. C-reactive protein and erythrocyte sedimentation rate were increased in 4 cases, and cerebrospinal fluid white blood cells and immunoglobulin G were increased in 1 case. Brain magnetic resonance imaging of 4 children showed multiple lesions, including bilateral frontal lobe, occipital lobe, parietal lobe, periventricular and corpus callosum lesions. Brain magnetic resonance imaging showed multiple demyelinating diseases in 1 case, and cervical and thoracic magnetic resonance imaging showed slender cervical and thoracic spinal cord. All patients were treated with corticosteroids combined with immunosuppressants or biological agents. The children were followed up for 6 months to 4 years, and 4 cases had good treatment results, and 1 case finally gave up treatment.Conclusions:The clinical manifestations of NBS are not specific, and brain magnetic resonance imaging shows that the lesion location and morphology are not specific. NBS children treated with corticosteroids combined with immunosuppressive agents or biological agents have a good prognosis.
2.Exercise Regulates Structural Plasticity and Neurogenesis of Hippocampal Neurons and Improves Memory Impairment in High-fat Diet-induced Obese Mice
Meng-Si YAN ; Lin-Jie SHU ; Chao-Ge WANG ; Ran CHENG ; Lian-Wei MU ; Jing-Wen LIAO
Progress in Biochemistry and Biophysics 2025;52(4):995-1007
ObjectiveObesity has been identified as one of the most important risk factors for cognitive dysfunction. Physical exercise can ameliorate learning and memory deficits by reversing synaptic plasticity in the hippocampus and cortex in diseases such as Alzheimer’s disease. In this study, we aimed to determine whether 8 weeks of treadmill exercise could alleviate hippocampus-dependent memory impairment in high-fat diet-induced obese mice and investigate the potential mechanisms involved. MethodsA total of sixty 6-week-old male C57BL/6 mice, weighing between 20-30 g, were randomly assigned to 3 distinct groups, each consisting of 20 mice. The groups were designated as follows: control (CON), high-fat diet (HFD), and high-fat diet with exercise (HFD-Ex). Prior to the initiation of the treadmill exercise protocol, the HFD and HFD-Ex groups were fed a high-fat diet (60% fat by kcal) for 20 weeks. The mice in the HFD-Ex group underwent treadmill exercise at a speed of 8 m/min for the first 10 min, followed by 12 m/min for the subsequent 50 min, totally 60 min of exercise at a 0° slope, 5 d per week, for 8 weeks. We employed Y-maze and novel object recognition tests to assess hippocampus-dependent memory and utilized immunofluorescence, Western blot, Golgi staining, and ELISA to analyze axon length, dendritic complexity, number of spines, the expression of c-fos, doublecortin (DCX), postsynaptic density-95 (PSD95), synaptophysin (Syn), interleukin-1β (IL-1β), and the number of major histocompatibility complex II (MHC-II) positive cells. ResultsMice with HFD-induced obesity exhibit hippocampus-dependent memory impairment, and treadmill exercise can prevent memory decline in these mice. The expression of DCX was significantly decreased in the HFD-induced obese mice compared to the control group (P<0.001). Treadmill exercise increased the expression of c-fos (P<0.001) and DCX (P=0.001) in the hippocampus of the HFD-induced obese mice. The axon length (P<0.001), dendritic complexity (P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P<0.001) in the hippocampus were significantly decreased in the HFD-induced obese mice compared to the control group. Treadmill exercise increased the axon length (P=0.002), dendritic complexity(P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P=0.001) of the hippocampus in the HFD-induced obese mice. Our study found a significant increase in MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of HFD-induced obese mice compared to the control group. Treadmill exercise was found to reduce the number of MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of obese mice induced by a HFD. ConclusionTreadmill exercise led to enhanced neurogenesis and neuroplasticity by increasing the axon length, dendritic complexity, dendritic spine numbers, and the expression of PSD95 and DCX, decreasing the number of MHC-II positive cells and neuroinflammation in HFD-induced obese mice. Therefore, we speculate that exercise may serve as a non-pharmacologic method that protects against HFD-induced hippocampus-dependent memory dysfunction by enhancing neuroplasticity and neurogenesis in the hippocampus of obese mice.
3.Carbon-friendly ecological cultivation mode of Dendrobium huoshanense based on greenhouse gas emission measurement.
Di TIAN ; Jun-Wei YANG ; Bing-Rui CHEN ; Xiu-Lian CHI ; Yan-Yan HU ; Sheng-Nan TANG ; Guang YANG ; Meng CHENG ; Ya-Feng DAI ; Shi-Wen WANG
China Journal of Chinese Materia Medica 2025;50(1):93-101
Ecological cultivation is an important way for the sustainable production of traditional Chinese medicine in the context of the carbon peaking and carbon neutrality goals. Facility cultivation and simulative habitat cultivation modes have been developed and applied to develop the endangered Dendrobium huoshanense on the basis of protection. However, the differences in the greenhouse gas emissions and global warming potential of these cultivation modes remain unexplored, which limits the accurate assessment of carbon-friendly ecological cultivation modes of D. huoshanense. Greenhouse gas emission flux monitoring based on the static chamber method provides an effective way to solve this problem. Therefore, this study conducted a field experiment in the facility cultivation and simulative habitat cultivation modes at a D. huoshanense cultivation base in Dabie Mountains, Anhui Province. From April 2023 to March 2024, samples of greenhouse gases were collected every month, and the concentrations of CO_2, CH_4, and N_2O of the samples were then detected by gas chromatography. The greenhouse gas emission fluxes, cumulative emissions, and global warming potential were further calculated, and the following results were obtained.(1)The two cultivation modes of D. huoshanense showed significant differences in greenhouse gas emission fluxes, especially the CO_2 emission flux, with a pattern of facility cultivation>simulative habitat cultivation [(35.60±11.70)mg·m~(-2)·h~(-1) vs(2.10±4.59)mg·m~(-2)·h~(-1)].(2) The annual cumulative CO_2 emission flux in the case of facility cultivation was significantly higher than that of simulative habitat cultivation[(3 077.00±842.00)kg·hm~(-2) vs(221.00±332.00)kg·hm~(-2)], while no significant difference was found in annual cumulative CH_4 and N_2O emission fluxes.(3) The facility cultivation mode had a significantly higher global warming potential than the simulative habitat cultivation mode [(3 053.00±847.00)kg·hm~(-2) vs(196.00±362.00)kg·hm~(-2)]. Overall, the simulative habitat cultivation of D. huoshanense has obvious carbon-friendly characteristics compared with facility cultivation, which is in line with the concept of ecological cultivation of medicinal plants. This study is of great reference significance for the implementation and promotion of the ecological cultivation mode of D. huoshanense under carbon peaking and carbon neutrality goals.
Dendrobium/chemistry*
;
Greenhouse Gases/metabolism*
;
Carbon/analysis*
;
Ecosystem
;
Carbon Dioxide/metabolism*
;
China
;
Global Warming
4.Research progress on pharmacological effects and mechanism of α-asarone and β-asarone in Acori Tatarinowii Rhizoma.
Hao WANG ; Lei GAO ; Jin-Lian ZHANG ; Ling-Yun ZHONG ; Shu-Han JIN ; Xiao-Yan CHEN ; Wen ZHANG ; Jia-Wen WEN
China Journal of Chinese Materia Medica 2025;50(9):2305-2316
Acori Tatarinowii Rhizoma is the dried rhizome of Acorus tatarinowii in the family of Tennantiaceae, which has the efficacy of opening up the orifices and expelling phlegm, awakening the mind and wisdom, and resolving dampness and opening up the stomach. Modern studies have shown that volatile oil is the main active ingredient of Acori Tatarinowii Rhizoma, and α-asarone and β-asarone have been proved to be the active ingredients in the volatile oil of Acori Tatarinowii Rhizoma, with pharmacological effects such as anti-Alzheimer's disease, antiepileptic, anti-Parkinson's disease, antidepressant, anticerebral ischemia/reperfusion injury, anti-thrombosis, lipid-lowering, and antitumor. By summarising and outlining the pharmacological effects of α-asarone and β-asarone and elucidating the possible mechanisms of their pharmacological effects, we can provide theoretical basis for the further research and clinical application of Acori Tatarinowii Rhizoma.
Allylbenzene Derivatives
;
Acorus/chemistry*
;
Anisoles/chemistry*
;
Rhizome/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Animals
5.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
6.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
7.Natural products for the treatment of age-related macular degeneration: New insights focusing on mitochondrial quality control and cGAS/STING pathway.
Xuelu XIE ; Shan LIAN ; Wenyong YANG ; Sheng HE ; Jingqiu HE ; Yuke WANG ; Yan ZENG ; Fang LU ; Jingwen JIANG
Journal of Pharmaceutical Analysis 2025;15(5):101145-101145
Age-related macular degeneration (AMD) is a disease that affects the vision of elderly individuals worldwide. Although current therapeutics have shown effectiveness against AMD, some patients may remain unresponsive and continue to experience disease progression. Therefore, in-depth knowledge of the mechanism underlying AMD pathogenesis is urgently required to identify potential drug targets for AMD treatment. Recently, studies have suggested that dysfunction of mitochondria can lead to the aggregation of reactive oxygen species (ROS) and activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) innate immunity pathways, ultimately resulting in sterile inflammation and cell death in various cells, such as cardiomyocytes and macrophages. Therefore, combining strategies targeting mitochondrial dysfunction and inflammatory mediators may hold great potential in facilitating AMD management. Notably, emerging evidence indicates that natural products targeting mitochondrial quality control (MQC) and the cGAS/STING innate immunity pathways exhibit promise in treating AMD. Here, we summarize phytochemicals that could directly or indirectly influence the MQC and the cGAS/STING innate immunity pathways, as well as their interconnected mediators, which have the potential to mitigate oxidative stress and suppress excessive inflammatory responses, thereby hoping to offer new insights into therapeutic interventions for AMD treatment.
8.Exploration of New Susceptible Genes associated with Non-Alcoholic Fatty Liver Disease among Children with Obesity Using Whole Exome Sequencing.
Xiong Feng PAN ; Cai Lian WEI ; Jia You LUO ; Jun Xia YAN ; Xiang XIAO ; Jie WANG ; Yan ZHONG ; Mi Yang LUO
Biomedical and Environmental Sciences 2025;38(6):727-739
OBJECTIVE:
This study aimed to evaluate the association between susceptibility genes and non-alcoholic fatty liver disease (NAFLD) in children with obesity.
METHODS:
We conducted a two-step case-control study. Ninety-three participants were subjected to whole-exome sequencing (exploratory set). Differential genes identified in the small sample were validated in 1,022 participants using multiplex polymerase chain reaction and high-throughput sequencing (validation set).
RESULTS:
In the exploratory set, 14 genes from the NAFLD-associated pathways were identified. In the validation set, after adjusting for sex, age, and body mass index, ECI2 rs2326408 (dominant model: OR = 1.33, 95% CI: 1.02-1.72; additive model: OR = 1.22, 95% CI: 1.01-1.47), C6orf201 rs659305 (dominant model: OR = 1.30, 95% CI: 1.01-1.69; additive model: OR = 1.21, 95% CI: 1.00-1.45), CALML5 rs10904516 (pre-ad dominant model: OR = 1.36, 95% CI: 1.01-1.83; adjusted dominant model: OR = 1.40, 95% CI: 1.03-1.91; and pre-ad additive model: OR = 1.26, 95% CI: 1.04-1.66) polymorphisms were significantly associated with NAFLD in children with obesity ( P < 0.05). Interaction analysis revealed that the gene-gene interaction model of CALML5 rs10904516, COX11 rs17209882, and SCD5 rs3733228 was optional ( P < 0.05), demonstrating a negative interaction between the three genes.
CONCLUSION
In the Chinese population, the CALML5 rs10904516, C6orf201 rs659305, and ECI2 rs2326408 variants could be genetic markers for NAFLD susceptibility.
Humans
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Child
;
Male
;
Female
;
Genetic Predisposition to Disease
;
Case-Control Studies
;
Exome Sequencing
;
Adolescent
;
Polymorphism, Single Nucleotide
;
Obesity/complications*
;
Pediatric Obesity/complications*
;
China
9.Grade quality standard development of Lycium barbarum fruits from Ningxia genuine producing area
Zhong-lian YU ; Xue-ping LI ; Li YANG ; Zheng-tao WANG ; Wen-jing LIU ; Rui WANG ; Yan-hong SHI
Acta Pharmaceutica Sinica 2024;59(5):1399-1407
An integrated evaluation model based on the combination of traditional trait identification and modern chemical analysis was used for the identification of key indexes of grade classification and the establishment of grade quality standard of
10.Correlation Analysis Between Anti-cerebral Ischemia Oxidative Damage and Contents of Active Components in Characteristic Processed Products with Porcine Cardiac Blood and Other Processed Products of Salviae Miltiorrhizae Radix et Rhizoma from Menghe Medical School
Zhen ZENG ; Yuanpei LIAN ; Jiali CAI ; Chunyan YIN ; Dijun WANG ; Li ZHU ; Chanming LIU ; Wei HUANG ; Xiaojing YAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(15):162-171
ObjectiveTo analyze the correlation between 11 small molecule active components and 1 protein component of characteristic processed products with porcine cardiac blood and other products of Salviae Miltiorrhizae Radix et Rhizoma(SMRR) from Menghe medical school and anti-cerebral ischemic oxidative damage, and to identify its key component markers of characteristic processed products with porcine cardiac blood for anti-cerebral ischemic oxidative damage. MethodHigh performance liquid chromatography(HPLC) was established to simultaneously determine the contents of 11 active ingredients in SMRR and its processed products[processed with porcine cardiac blood, porcine blood, wine and transferrin(Tf) in porcine cardiac blood], and the content of Tf in different processed products of SMRR was detected by enzyme-linked immunosorbent assay(ELISA). Furthermore, A zebrafish ischemic stroke model was constructed to evaluate the effects of different processed products of SMRR on the behavioral trajectory of cerebral ischemic zebrafish, the neuronal damage of transgenic zebrafish Tg(elavl3:eGFP) brain, as well as the levels of malondialdehyde(MDA) and superoxide dismutase(SOD) in the brain tissues. The hippocampal neurons oxygen-glucose deprivation/reoxygenation(OGD/R)-induced ischemia-hypoxia model was constructed to evaluate the effects of different processed products of SMRR on oxidative damage of neuronal cells by taking lactate dehydrogenase(LDH), reactive oxygen species(ROS), MDA and SOD as indexes. Finally, principal component analysis(PCA), partial least squares-discriminant analysis(PLS-DA) and Spearman correlation analysis were used to analyze the 11 small molecule active components and 1 protein component with efficacy indicators, in order to screen the key components of the characteristic processed products with porcine cardiac blood for cerebral ischemic oxidative damage. ResultCompared with the raw products, the contents of water-soluble and fat-soluble components in processed products of SMRR increased to different degrees, while the content of salvianolic acid A decreased. Compared with the wine-processed products, the contents of salvianolic acid B, danshensu, rosmarinic acid and other components in the porcine cardiac blood-processed products, porcine blood-processed products, Tf-processed products were increased, while the content of salvianolic acid A was decreased. ELISA results showed that there was no significant difference in Tf content between the porcine cardiac blood-processed products, porcine blood-processed products, Tf-processed products. Pharmacological results showed that different processed products of SMRR could improve the behavioral deficits, brain neuronal injury and oxidative stress after ischemic stroke in zebrafish, and the effect of the porcine cardiac blood-processed products was most pronounced. PCA results showed that salvianolic acid B, salvianolic acid A, rosmarinic acid, lithospermic acid, danshensu, tanshinone ⅡA, caffeic acid, cryptotanshinone and tanshinone Ⅰ were the main contributing components of SMRR and its processed products. And the results of correlation analysis showed that the contents of cryptotanshinone, rosmarinic acid, caffeic acid, dihydrotanshinone Ⅰ, salvianolic acid B, tanshinone ⅡA and tanshinone Ⅰ were negatively correlated with MDA level in zebrafish brain tissue, while the contents of lithospermic acid, protocatechuic aldehyde, rosmarinic acid, dihydrotanshinone Ⅰ, salvianolic acid B and Tf were positively correlated with SOD level, and the contents of rosmarinic acid, caffeic acid, dihydrotanshinone Ⅰ, salvianolic acid B, tanshinone ⅡA, tanshinone Ⅰ, danshensu, Tf were positively correlated with neuronal fluorescence intensity in the zebrafish brain. And the contents of lithospermic acid, protocatechuic aldehyde, rosmarinic acid, dihydrotanshinone Ⅰ, salvianolic acid B, tanshinone ⅡA and Tf were negatively correlated with LDH, ROS and MDA levels and positively correlated with SOD level. ConclusionThere are differences in the anti-ischemic oxidative damage effects of SMRR and its different processed products, among which the porcine cardiac blood-processed products has the strongest effect on improving oxidative damage, which may be related to the content changes of salvianolic acid B, danshensu, rosmarinic acid and other components. This study can provide a basis for clarifying the quality markers of SMRR processed with porcine cardiac blood for cerebral ischemia and elucidating its processing mechanism.

Result Analysis
Print
Save
E-mail