1.CyberKnife Stereotactic Radiosurgery System for Pituitary Tumors and Pulmonary Cancer Bone Metastases: Initiating a New Chapter in Stereotactic Radiotherapy
Weishi CHENG ; Xin LIAN ; Tingtian PANG ; Yue ZHANG ; Yuliang SUN ; Zhikai LIU
Medical Journal of Peking Union Medical College Hospital 2025;16(3):790-796
The CyberKnife, an acronym for the stereotactic radiosurgery platform, represents an image-guided stereotactic radiotherapy technique. This technology precisely delivers ionizing radiation to tissues, effectively damaging tumor cells, and is suitable for radiotherapy of both intracranial and extracranial tumors. This article reports the first performance of CyberKnife by radiotherapy at Peking Union Medical College Hospital, including a patient with uncontrolled pituitary adenoma after surgery and radiotherapy, and another patient with vertebral metastasis following targeted therapy for lung adenocarcinoma. The application of CyberKnife technology in radiotherapy has achieved highly accurate dose delivery, enabling targeted irradiation of tumor lesions while minimizing damage to surrounding normal tissues, thereby yielding relatively ideal clinical outcomes.
2.Association between long-term exposure to low-dose ionizing radiation and metabolic syndrome among medical radiologists
Changyong WEN ; Xiaoman ZHOU ; Xiaolian LIU ; Yiqing LIAN ; Weizhen GUO ; Yanting CHEN ; Xin LAN ; Mingfang LI ; Sufen ZHANG ; Weixu HUANG ; Jianming ZOU ; Huifeng CHEN
Journal of Environmental and Occupational Medicine 2025;42(10):1209-1215
Background In recent years, the increasingly widespread application of nuclear and medical radiation technologies has resulted in a large number of occupational populations exposed to low-dose ionizing radiation (LDIR). At present, there is no consistent conclusion on the effects of long-term exposure to LDIR on the metabolic health of the occupational population. Objective To explore the association between long-term exposure to LDIR and metabolic syndrome (MetS) among medical radiologists. Methods A cross-sectional study was conducted to enroll
3.Comparison of treatment regimens for unresectable stage III epidermal growth factor receptor ( EGFR ) mutant non-small cell lung cancer.
Xin DAI ; Qian XU ; Lei SHENG ; Xue ZHANG ; Miao HUANG ; Song LI ; Kai HUANG ; Jiahui CHU ; Jian WANG ; Jisheng LI ; Yanguo LIU ; Jianyuan ZHOU ; Shulun NIE ; Lian LIU
Chinese Medical Journal 2025;138(14):1687-1695
BACKGROUND:
Durvalumab after chemoradiotherapy (CRT) failed to bring survival benefits to patients with epidermal growth factor receptor ( EGFR ) mutations in PACIFIC study (evaluating durvalumab in patients with stage III, unresectable NSCLC who did not have disease progression after concurrent chemoradiotherapy). We aimed to explore whether locally advanced inoperable patients with EGFR mutations benefit from tyrosine kinase inhibitors (TKIs) and the optimal treatment regimen.
METHODS:
We searched the PubMed, Embase, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases from inception to December 31, 2022 and performed a meta-analysis based on a Bayesian framework, with progression-free survival (PFS) and overall survival (OS) as the primary endpoints.
RESULTS:
A total of 1156 patients were identified in 16 studies that included 6 treatment measures, including CRT, CRT followed by durvalumab (CRT-Durva), TKI monotherapy, radiotherapy combined with TKI (RT-TKI), CRT combined with TKI (CRT-TKI), and TKI combined with durvalumab (TKI-Durva). The PFS of patients treated with TKI-containing regimens was significantly longer than that of patients treated with TKI-free regimens (hazard ratio [HR] = 0.37, 95% confidence interval [CI], 0.20-0.66). The PFS of TKI monotherapy was significantly longer than that of CRT (HR = 0.66, 95% CI, 0.50-0.87) but shorter than RT-TKI (HR = 1.78, 95% CI, 1.17-2.67). Furthermore, the PFS of RT-TKI or CRT-TKI were both significantly longer than that of CRT or CRT-Durva. RT-TKI ranked first in the Bayesian ranking, with the longest OS (60.8 months, 95% CI = 37.2-84.3 months) and the longest PFS (21.5 months, 95% CI, 15.4-27.5 months) in integrated analysis.
CONCLUSIONS:
For unresectable stage III EGFR mutant NSCLC, RT and TKI are both essential. Based on the current evidence, RT-TKI brings a superior survival advantage, while CRT-TKI needs further estimation. Large randomized clinical trials are urgently needed to explore the appropriate application sequences of TKI, radiotherapy, and chemotherapy.
REGISTRATION
PROSPERO; https://www.crd.york.ac.uk/PROSPERO/ ; No. CRD42022298490.
Humans
;
Carcinoma, Non-Small-Cell Lung/therapy*
;
ErbB Receptors/genetics*
;
Lung Neoplasms/drug therapy*
;
Mutation/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Chemoradiotherapy
;
Antibodies, Monoclonal/therapeutic use*
4.Mechanism of Naoxintong Capsules in treatment of rats with multiple cerebral infarctions and myocardial injury based on HIF-1α/VEGF pathway.
Xiao-Lu ZHANG ; Jin-Feng SHANG ; Yin-Lian WEN ; Gui-Jin-Feng HUANG ; Bo-Hong WANG ; Wan-Ting WEI ; Wen-Bin CHEN ; Xin LIU
China Journal of Chinese Materia Medica 2025;50(7):1889-1899
This study aims to explore whether Naoxintong Capsules improve multiple cerebral infarctions and myocardial injury via promoting angiogenesis, thereby exerting a simultaneous treatment effect on both the brain and heart. Male SD rats were randomly divided into six groups: sham-operated group, model group, high-dose, medium-dose, and low-dose groups of Naoxintong Capsules(440, 220, and 110 mg·kg~(-1)), and nimodipine group(10.8 mg·kg~(-1)). Rat models of multiple cerebral infarctions were established by injecting autologous thrombus, and samples were collected and tested seven days after modeling. Evaluations included multiple cerebral infarction model assessments, neurological function scores, grip strength tests, and rotarod tests, so as to evaluate neuromotor functions. Morphological structures of brain and heart tissue were observed using hematoxylin-eosin(HE) staining, Nissl staining, and Masson staining. Network pharmacology was employed to screen the mechanisms of Naoxintong Capsules in improving multiple cerebral infarctions and myocardial injury. Neuronal and myocardial cell ultrastructures were observed using transmission electron microscopy. Apoptosis rate in brain neuronal cells was detected by TdT-mediated dUTP nick end labeling(TUNEL) staining, and reactive oxygen species(ROS) levels in myocardial cells were measured. Immunofluorescence was used to detect the expression of platelet endothelial cell adhesion molecule-1(CD31), antigen identified by monoclonal antibody Ki67(Ki67), hematopoietic progenitor cell antigen CD34(CD34), and hypoxia inducible factor-1α(HIF-1α) in brain and myocardial tissue. Western blot, and real-time quantitative polymerase chain reaction(RT-qPCR) were used to detect the expression of HIF-1α, vascular endothelial growth factor(VEGF), vascular endothelial growth factor receptor 2(VEGFR2), sarcoma(Src), basic fibroblast growth factor(bFGF), angiopoietin-1(Ang-1), and TEK receptor tyrosine kinase(Tie-2). Compared with the model group, the medium-dose group of Naoxintong Capsules showed significantly lower neurological function scores, increased grip strength, and prolonged time on the rotarod. Pathological damage in brain and heart tissue was reduced, with increased and more orderly arranged mitochondria in neurons and cardiomyocytes. Apoptosis in brain neuronal cells was decreased, and ROS levels in cardiomyocytes were reduced. The microvascular density and endothelial cells of new blood vessels in brain and heart tissue increased, with increased overlapping regions of CD31 and Ki67 expression. The relative protein and mRNA expression levels of HIF-1α, VEGF, VEGFR2, Src, Ang-1, Tie-2, and bFGF were elevated in brain tissue and myocardial tissue. Naoxintong Capsules may improve multiple cerebral infarctions and myocardial injury by mediating HIF-1α/VEGF expression to promote angiogenesis.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Cerebral Infarction/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Capsules
;
Signal Transduction/drug effects*
;
Humans
;
Brain/metabolism*
;
Myocardium/metabolism*
;
Apoptosis/drug effects*
5.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
6.Natural killer cell-derived granzyme B as a therapeutic target for alleviating graft injury during liver transplantation.
Kai WANG ; Zhoucheng WANG ; Xin SHAO ; Lijun MENG ; Chuanjun LIU ; Nasha QIU ; Wenwen GE ; Yutong CHEN ; Xiao TANG ; Xiaodong WANG ; Zhengxing LIAN ; Ruhong ZHOU ; Shusen ZHENG ; Xiaohui FAN ; Xiao XU
Acta Pharmaceutica Sinica B 2025;15(10):5277-5293
Liver transplantation (LT) has become a standard treatment for end-stage liver diseases, and graft injury is intricately associated with poor prognosis. Granzyme B (GZMB) plays a vital role in natural killer (NK) cell biology, but whether NK-derived GZMB affects graft injury remains elusive. Through the analysis of single-cell RNA-sequencing data obtained from human LT grafts and the isolation of lymphocytes from mouse livers following ischemia-reperfusion injury (IRI), we demonstrated that 2NK cells with high expression of GZMB are enriched in patients and mice. Both systemically and liver-targeted depletion of NK cells led to a notable reduction in GZMB+ cell infiltration, subsequently resulting in diminished graft injury. Notably, the reconstitution of Il2rg -/- Rag2 -/- mice with purified Gzmb-KO NK cells demonstrated superior outcomes compared to those with wild-type NK cells. Crucially, global knockout of GZMB and pharmacological inhibition exhibited remarkable improvements in liver function in both mouse IRI and rat LT models. Moreover, a phosphorylated derivative of FDA-approved vidarabine was identified as an effective inhibitor of mouse GZMB activity by molecular dynamics, which could provide a potential avenue for therapeutic intervention. Therefore, targeting NK cell-derived GZMB during the LT process suggests potential therapeutic strategies to improve post-transplant outcomes.
7.Lentivirus-modified hematopoietic stem cell gene therapy for advanced symptomatic juvenile metachromatic leukodystrophy: a long-term follow-up pilot study.
Zhao ZHANG ; Hua JIANG ; Li HUANG ; Sixi LIU ; Xiaoya ZHOU ; Yun CAI ; Ming LI ; Fei GAO ; Xiaoting LIANG ; Kam-Sze TSANG ; Guangfu CHEN ; Chui-Yan MA ; Yuet-Hung CHAI ; Hongsheng LIU ; Chen YANG ; Mo YANG ; Xiaoling ZHANG ; Shuo HAN ; Xin DU ; Ling CHEN ; Wuh-Liang HWU ; Jiacai ZHUO ; Qizhou LIAN
Protein & Cell 2025;16(1):16-27
Metachromatic leukodystrophy (MLD) is an inherited disease caused by a deficiency of the enzyme arylsulfatase A (ARSA). Lentivirus-modified autologous hematopoietic stem cell gene therapy (HSCGT) has recently been approved for clinical use in pre and early symptomatic children with MLD to increase ARSA activity. Unfortunately, this advanced therapy is not available for most patients with MLD who have progressed to more advanced symptomatic stages at diagnosis. Patients with late-onset juvenile MLD typically present with a slower neurological progression of symptoms and represent a significant burden to the economy and healthcare system, whereas those with early onset infantile MLD die within a few years of symptom onset. We conducted a pilot study to determine the safety and benefit of HSCGT in patients with postsymptomatic juvenile MLD and report preliminary results. The safety profile of HSCGT was favorable in this long-term follow-up over 9 years. The most common adverse events (AEs) within 2 months of HSCGT were related to busulfan conditioning, and all AEs resolved. No HSCGT-related AEs and no evidence of distorted hematopoietic differentiation during long-term follow-up for up to 9.6 years. Importantly, to date, patients have maintained remarkably improved ARSA activity with a stable disease state, including increased Functional Independence Measure (FIM) score and decreased magnetic resonance imaging (MRI) lesion score. This long-term follow-up pilot study suggests that HSCGT is safe and provides clinical benefit to patients with postsymptomatic juvenile MLD.
Humans
;
Leukodystrophy, Metachromatic/genetics*
;
Pilot Projects
;
Genetic Therapy/methods*
;
Hematopoietic Stem Cell Transplantation
;
Male
;
Follow-Up Studies
;
Female
;
Lentivirus/genetics*
;
Child
;
Child, Preschool
;
Hematopoietic Stem Cells/metabolism*
;
Cerebroside-Sulfatase/metabolism*
;
Adolescent
8.Establishment and validation of intelligent detection model for acute promyelocytic leukemia based on contrastive learning in complete blood cell analysis
Shengli SUN ; Jianying LI ; Heqing LIAN ; Bairui LI ; Dan LIU ; Geng WANG ; Xin WANG ; Yuan HUANG ; Jianping ZHANG ; Qian CHEN ; Wei WU
Chinese Journal of Clinical Laboratory Science 2024;42(4):252-255
Objective To establish an intelligent detection algorithm model for acute promyelocytic leukemia(M3 model)based on a contrast large model using machine learning statistical software and validate its effectiveness.Methods The data from 8 256 outpa-tients and inpatients who underwent complete blood cell analysis at Peking Union Medical College Hospital were retrieved and analyzed using the laboratory information system(LIS)and hospital information system(HIS).A M3 screening model was established and vali-dated using the data from outpatients and inpatients who underwent complete blood cell analysis at our hospital from July to October 2023.Results The M3 model demonstrated potential application value in screening for M3 disease in complete blood cell analysis,which showed certain efficacy in screening for neutrophil toxicity changes,particularly in identifying two cases of blue-green inclusion bodies in neutrophils.Conclusion The M3 model exhibited low specificity for M3 diagnosis.Future research should focus on increas-ing the number of M3-positive cases to optimize the model,ensuring high sensitivity while improving specificity.This model will provide assistance for the intelligent review of complete blood cell analysis.
9.The use of bronchial occlusion test in a preterm infant with severe bronchopulmonary dysplasia complicated by severe lobar emphysema
Hui-Juan LIU ; Rui-Lian GUAN ; Xin QIN ; Huai-Zhen WANG ; Gao-Long ZHANG ; Jian-Bin LI ; Li MA ; Le LI ; Lian-Wei LU ; Yi SUN ; Hua-Yan ZHANG
Chinese Journal of Contemporary Pediatrics 2024;26(6):659-664
In infants with severe bronchopulmonary dysplasia(sBPD),severe pulmonary lobar emphysema may occur as a complication,contributing to significant impairment in ventilation.Clinical management of these infants is extremely challenging and some may require lobectomy to improve ventilation.However,prior to the lobectomy,it is very difficult to assess whether the remaining lung parenchyma would be able to sustain adequate ventilation postoperatively.In addition,preoperative planning and perioperative management are also quite challenging in these patients.This paper reports the utility of selective bronchial occlusion in assessing the safety and efficacy of lobectomy in a case of sBPD complicated by severe right upper lobar emphysema.Since infants with sBPD already have poor lung development and significant lung injury,lobectomy should be viewed as a non-traditional therapy and be carried out with extreme caution.Selective bronchial occlusion test can be an effective tool in assessing the risks and benefits of lobectomy in cases with sBPD and lobar emphysema.However,given the technical difficulty,successful application of this technique requires close collaboration of an experienced interdisciplinary team.
10.Methodological establishment of PTV and PRV margins for MRI guided online adapt-to-position radiotherapy for intracranial tumors
Qiu GUAN ; Nan LIU ; Xin LIAN ; Tingting DONG ; Yunliang SUN ; Hao LIANG ; Wei TIAN ; Lang YU ; Bo YANG ; Jie QIU
Chinese Journal of Radiation Oncology 2024;33(12):1106-1111
Objective:To establish a method for obtaining planning target volume (PTV) and planning risk volume (PRV) margins caused by rotation in the use of adapt-to-position (ATP) modality of magnetic resonance linear accelerator (MRL) for patients with intracranial tumors.Methods:Clinical data of 6 patients with intracranial tumors (150 fractions in total) who received MRI-guided online ATP radiotherapy in Peking Union Medical College Hospital from November 2023 to January 2024 were retrospectively analyzed. The pre-planned CT structure was copied onto each segmented MR image and then the structures were traced back to the CT image according to the three-dimensional registration relationship. The anisotropic distance of the structure based on the original CT structure was calculated to obtain the variation range of the target and the organs at risk. The maximum anisotropic value was taken as the result of the PTV and the relationship between the results and intracranial location of different patients was analyzed. Group comparison was performed by Chi-square test. Two group comparison was conducted by post-hoc Wilcoxon signed-rank test. Results:After the rotation deviation was included, the range of target changes in the six directions of left and right (L/R), anterior and posterior (A/P) and superior and inferior (S/I) of the 6 patients were: (1.24± 0.86) mm/(1.91± 1.07) mm, (2.02± 1.26) mm/(1.66± 1.07) mm, (1.84± 1.84) mm /(2.94±1.93) mm, respectively. The results in the SI direction were significantly different, and the values in the I direction in 2 patients exceeded 4 mm, the margins suitable for all patients were 3.01 mm/2.4 mm(A/P), 1.9 mm/2.93 mm(L/R) and 3.14 mm/4.62 mm(S/I) in different directions, respectively. The L/R direction of the lens and the S/I direction of the optic nerve were significantly changed, and the A/P direction of the brain stem was (3.99± 4.64) mm. Larger values might be required when the target was in the posterior brain (left-down area, right-down area).Conclusions:The rotation deviation, organ movement and intracranial location affect the PTV and the organs at risk PRV in the MRI-guided ATP modality in intracranial tumors patients. The margin generation method based on image fusion can help to quantify the margin value reasonably.

Result Analysis
Print
Save
E-mail