1.Analysis on Quality Standard of Hedyotis Herba Dispensing Granules Based on Standard Decoction
Jinghua ZHANG ; Nana WU ; Yanan LYU ; Guiyun CAO ; Jiacheng XU ; Yongqiang LIN ; Xiaodi DONG ; Jinxin LI ; Zhaoqing MENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):210-217
ObjectiveTo establish the specific chromatogram and quantitative analysis of multi-components by single-marker(QAMS) based on linear calibration using two reference substances(LCTRS), explore the consistency between Hedyotis Herba dispensing granules and standard decoction, and evaluate the quality of the dispensing granules. MethodsHigh performance liquid chromatography(HPLC) specific chromatogram was established based on 15 batches of Hedyotis Herba standard decoction and 10 batches of the dispensing granules, and LCTRS was used to locate chromatographic peaks. The actual retention times of 7 characteristic peaks in the specific chromatogram was measured on 24 different types of C18 columns, taking deacetyl asperulosidic acid and asperulosidic acid as the dual standard compounds, the retention times of the other 5 characteristic peaks were predicted and validated. Based on this, QAMS was developed to determine the contents of four components(deacetyl asperulosidic acid, deacetyl asperulosidic acid methyl ester, asperulosidic acid, and p-coumaric acid). Then, the relative correction factors of deacetyl asperulosidic acid, deacetyl asperulosidic acid methyl ester and p-coumaric acid were calculated using the reference peak of asperulosidic acid in the dual standard compounds, and each component was quantified accordingly. Finally, the consistency between the dispensing granules and standard decoction was assessed by taking extract rate of the standard decoction, consistency of the specific chromatograms, contents and transfer rates of the indicator components as indexes, and the quality of the dispensing granules was evaluated. ResultsThere were 7 common peaks in the characteristic chromatogram of samples of Hedyotis Herba standard decoction and the dispensing granules, and four of them were identified by reference standards, namely deacetyl asperulosidic acid(peak 1), deacetyl asperulosidic acid methyl ester(peak 3), asperulosidic acid(peak 6) and p-coumaric acid(peak 7). The similarity between the dispensing granules and the standard decoction was >0.9. The absolute deviation in the predicted retention time for each component by LCTRS was lower than that of the relative retention time method. The extract rate of the 15 batches of Hedyotis Herba standard decoction ranged from 7.89% to 14.60%, the contents of deacetyl asperulosidic acid, deacetyl asperulosidic acid methyl ester, asperulosidic acid and p-coumaric acid were 6.62-19.70, 3.83-17.99, 1.57-6.69, 1.62-4.52 mg·g-1, and the transfer rates of these components from decoction pieces to the standard decoction were 22.89%-39.60%, 34.03%-62.24%, 24.25%-43.70%, and 40.58%-73.71%, respectively. The extract rate, index component contents and transfer rates from decoction pieces to the three batches of Hedyotis Herba dispensing granules(P1-P3), produced by manufacturer A, were similar to those of the standard decoction prepared from the same batch of decoction pieces, and all fell within the specified range. The contents of the 4 indicator components in 7 batches of the dispensing granules(P4-P10) from manufacturers B-E were all within the range of the content converted from the standard decoction based on the quantity of the dispensing granules. ConclusionThe established specific chromatogram and QAMS based on LCTRS are reasonable and reliable. Based on the evaluation indicators of standard decoction yield, consistency of specific chromatograms, contents and transfer rates of the four index components, the 10 batches of Hedyotis Herba dispensing granules from various manufacturers have exhibited good consistency with the standard decoction, indicating that the current production process is relatively reasonable.
2.Research progress on dry eye-related factors and treatment after phacoemulsification
Ao ZHANG ; Shiyi LI ; Ju HUANG ; Kang WANG ; Lin WANG ; Yingbin XIE
International Eye Science 2025;25(5):770-774
Phacoemulsification with intraocular lens implantation(Phaco+lOL)has become the main treatment for cataracts due to small incision and fast recovery. Phacoemulsification can damage the conjunctiva, cornea and other ocular surface tissues, causing local inflammation, which in turn leads to eye dryness and discomfort after surgery. According to studies, patients who suffer from phacoemulsification most experience dry eye syndrome within 24 h, which gradually worsens and reaches its peak in the following 1 wk, seriously affecting their quality of life. The review aims to comprehensively investigate the effects of preoperative patient physical conditions and local ocular status, intraoperative maneuvers and postoperative treatments on postoperative dry eye, with the expectation of formulating scientific and effective preventive measures for potential dry eye patients after phacoemulsification, and providing a theoretical basis for postoperative dry eye treatment.
3.Analysis and forecast of the disease burden of schistosomiasis in China from 1992 to 2030
Kai LIN ; Chenhuan ZHANG ; Zhendong XU ; Xuemei LI ; Renzhan HUANG ; Yawen LIU ; Haihang YU ; Lisi GU
Chinese Journal of Schistosomiasis Control 2025;37(1):24-34
Objective To analyze the trends in the disease burden of schistosomiasis in China from 1992 to 2021, and to project the disease burden of schistosomiasis in China from 2022 to 2030, so as to provide insights into the elimination of schistosomiasis in China. Methods The prevalence, age-standardized prevalence, disability-adjusted life year (DALYs) rate and age-standardized DALYs rate of schistosomiasis, as well as the years lost due to disability (YLDs) rate and age-standardized YLDs rate of anemia attributable to Schistosoma infections in China, the world and different socio-demographic index (SDI) regions were captured from the Global Burden of Disease Study 2021 (GBD 2021) data resources, and the trends in the disease burden due to schistosomiasis were evaluated with estimated annual percentage change (EAPC) and its 95% confidence interval (CI). In addition, the age, period and cohort effects on the prevalence of schistosomiasis were examined in China using an age-period-cohort (APC) model, and the disease burden of schistosomiasis was predicted in China from 2022 to 2030 using a Bayesian age-period-cohort (BAPC) model. Results The age-standardized prevalence and DALYs rate of schistosomiasis, and the age-standardized YLDs rate of anemia attributable to Schistosoma infections were 761.32/105, 5.55/105 and 0.38/105 in China in 2021. These rates were all lower than the global levels (1 914.30/105, 21.90/105 and 3.36/105, respectively), as well as those in the medium SDI regions (1 413.61/105, 12.10/105 and 1.93/105, respectively), low-medium SDI regions (2 461.03/105, 26.81/105 and 4.48/105, respectively), and low SDI regions (5 832.77/105, 94.48/105 and 10.65/105, respectively), but higher than those in the high SDI regions (59.47/105, 0.49/105 and 0.05/105, respectively) and high-medium SDI regions (123.11/105, 1.20/105 and 0.12/105, respectively). The prevalence and DALYs rate of schistosomiasis were higher among men (820.79/105 and 5.86/105, respectively) than among women (697.96/105 and 5.23/105, respectively) in China in 2021, while the YLDs rate of anemia attributable to Schistosoma infections was higher among women (0.66/105) than among men (0.12/105). The prevalence of schistosomiasis peaked at ages of 30 to 34 years among both men and women, while the DALYs rate of schistosomiasis peaked among men at ages of 15 to 19 years and among women at ages of 20 to 24 years. The age-standardized prevalence of schistosomiasis showed a moderate decline in China from 1992 to 2021 relative to different SDI regions [EAPC = -1.51%, 95% CI: (-1.65%, -1.38%)], while the age-standardized DALYs rate [EAPC = -3.61%, 95% CI: (-3.90%, -3.33%)] and age-standardized YLDs rate of anemia attributable to Schistosoma infections [EAPC = -4.16%, 95% CI: (-4.38%, -3.94%)] appeared the fastest decline in China from1992 to 2021 relative to different SDI regions. APC modeling showed age, period, and cohort effects on the trends in the prevalence of schistosomiasis in China from 1992 to 2021, and the prevalence of schistosomiasis appeared a rise followed by decline with age, and reduced with period and cohort. BAPC modeling revealed that the age-standardized prevalence and age-standardized DALYs rate of schistosomiasis, and age-standardized YLDs rate of anemia attributable to Schistosoma infections all appeared a tendency towards a decline in China from 2022 to 2030, which reduced to 722.72/105 [95% CI: (538.74/105, 906.68/105)], 5.19/105 [95% CI: (3.54/105, 6.84/105)] and 0.30/105 [95% CI: (0.21/105, 0.39/105)] in 2030, respectively. Conclusions The disease burden of schistosomiasis appeared a tendency towards a decline in China from 1992 to 2021, and is projected to appear a tendency towards a decline from 2022 to 2030. There are age, period and cohort effects on the prevalence of schistosomiasis in China. Precision schistosomiasis control is required with adaptations to current prevalence and elimination needs.
4.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
5.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
6.Analysis of Treatment of Diabetic Kidney Disease with Modified Buyang Huanwutang Based on 5hmC-Seal Sequencing Technology
Baixin ZHEN ; Haoyu CHEN ; Duolikun MAIMAITIYASEN ; Xuehui LI ; Hong XIAO ; Xiaxuan LI ; Kuerban SUBINUER ; Lei ZHANG ; Hangyu CHEN ; Jian LIN ; Linlin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):208-217
ObjectiveTo improve the therapeutic effect of Buyang Huanwutang(BYHW) on diabetic kidney disease (DKD) and explore new methods for developing new Chinese medicine decoctions,we utilized 5-hydroxymethylcytosine (5hmC)-Seal sequencing technology and network pharmacology to modify BYHW. MethodsWe selected 14 diabetes mellitus (DM) patients and 15 DKD patients hospitalized in the Department of Endocrinology of Peking University Third Hospital in 2021. Circulating free DNA (cfDNA) in the patients’ plasma was sequenced. After data processing and screening, we performed temporal clustering analysis to select a DKD 5hmC gene set, which was then cross-validated with a DKD database gene set to obtain the DKD gene set. We retrieved target genes of the seven herbal components of BYHW from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Encyclopedia of Traditional Chinese Medicine (ETCM), and performed cross-analysis with the DKD gene set to identify common genes shared by the disease and the Chinese medicines. A protein-protein interaction (PPI) network was constructed for the common genes to screen out the key genes. Chinese medicines targeting these key genes were searched against ETCM to identify removable Chinese medicines. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed on non-common DKD genes, and key genes in DKD-related pathways were selected based on machine learning. The GSE30529 dataset was used to verify the expression trends of 5hmC-modified genes and the feasibility of target genes as drug targets. TCMBank was used to search for target genes and obtain compounds targeting these genes and the corresponding Chinese medicines to construct a "key target-compound-Chinese medicine" network. Molecular docking was employed to verify the binding affinity of compounds with key targets. TCMSP and ETCM were used to search and count the candidate Chinese medicines targeting DKD-related genes, and a new decoction was formed by adding the selected Chinese medicines. A mouse model of DKD was established to examine the efficacy of the new decoction based on the mouse body mass, random blood glucose, urinary microalbumin (mALB), serum creatinine (Scr), and blood urea nitrogen (BUN) and by hematoxylin-eosin staining, periodic acid-Schiff staining, Masson staining, immunofluorescence assay, and Real-time PCR. ResultsThe cross-analysis results showed that the DKD gene set included 507 genes, of which 30 were target genes of BYHW. The PPI analysis indicated that the top 15% target genes regarding the degree were interleukin-6 (IL-6), Toll-like receptor 4 (TLR4), lactotransferrin (LTF), lipoprotein lipase (LPL), and sterol regulatory element-binding transcription factor 1 (SREBF1). Persicae Semen and Pheretima in BYHW were unrelated to key genes and removed. Machine learning identified 10 potential target genes, among which TBC1 domain family member 5 (TBC1D5), RAD51 paralog B (RAD51B), and proteasome 20S subunit alpha 6 (PSMA6) had expression trends consistent with the GSE30529 dataset and could serve as drug targets. The "key target-compound-Chinese medicine" network and molecular docking results indicated that the compounds with good binding affinity to target proteins were arginine, glycine, myristicin, serine, and tyrosine, corresponding to 121 Chinese medicines. The top 10 Chinese medicines targeting DKD-related genes were Lycii Fructus, Ginseng Radix et Rhizoma, Dioscoreae Rhizoma, Rehmanniae Radix Praeparata, Isatidis Radix, Glehniae Radix, Ophiopogonis Radix, Allii Sativi Bulbus, Isatidis Folium, and Bolbostemmatis Rhizoma. Based on traditional Chinese medicine theory, the new decoction was obtained after removal of Persicae Semen and Pheretima and addition of Rehmanniae Radix Praeparata and Dioscoreae Rhizoma. Animal experiment results indicated that the modified BYHW improved the kidney function and inhibited renal fibrosis in DKD mice, with better effects than the original decoction. ConclusionThe BYHW modified based on 5hmC-Seal sequencing demonstrates better performance in inhibiting fibrosis and ameliorating DKD than the original decoction. This elucidates the biomedical theory behind the epigenetic modification of traditional Chinese medicine prescriptions, potentially offering new perspectives for the exploration of these prescriptions
7.Quality Evaluation of Chuanxiong Rhizoma Dispensing Granules Based on HPLC Specific Chromatogram and Two Reference Substances for Determination of Multiple Components
Jinxin LI ; Xue DONG ; Shuai DUAN ; Guiyun CAO ; Jinghua ZHANG ; Yongfu LUAN ; Yongqiang LIN ; Xiaodi DONG ; Zhaoqing MENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):246-253
ObjectiveTo establish the specific chromatogram of Chuanxiong Rhizoma dispensing granules(CRdg), and to evaluate its quality by chemometrics and two reference substances for determination of multiple components(TRSDMC). MethodsHigh performance liquid chromatography(HPLC) specific chromatograms were established using 13 batches of CRdg from 7 manufacturers, and preliminary quality evaluation was performed by similarity evaluation and chemometrics analysis. Eight characteristic peaks in the specific chromatogram of CRdg were measured on 22 different types of C18 columns, and the actual retention times were recorded. Taking chlorogenic acid(peak 1) and senkyunolide A(peak 8) as double standard compounds, the retention times of the eight characteristic peaks were predicted by linear calibration using two reference substances(LCTRS), and the method was validated on three other columns of different brands. Taking chlorogenic acid as reference peak, the relative correction factor method(RCFM) was used to quantify cryptochlorogenic acid, caffeic acid, ferulic acid, senkyunolide I and senkyunolide A, and the results were compared with the external standard method(ESM). ResultsThe similarities of specific chromatograms of 13 batches of CRdg were all >0.90, and a total of 8 characteristic peaks were calibrated, and six of them were identified, including chlorogenic acid(peak 1), cryptochlorogenic acid(peak 2), caffeic acid(peak 3), ferulic acid(peak 5), senkyunolide I(peak 6) and senkyunolide A(peak 8). Through chemometric analysis, it was found that ferulic acid, chlorogenic acid, senkyunolide I and cryptochlorogenic acid were the main components causing quality difference in CRdg, and the accuracy of LCTRS in predicting the retention time of 8 characteristic peaks was superior to that of the relative retention time method(RRT). Further comparison of the results obtained from RCFM and ESM showed that there was no statistically significant difference between the two methods. ConclusionA quality evaluation method for CRdg based on HPLC specific chromatogram and TRSDMC is established, its qualitative accuracy is better than that of RRT, the quantitative accuracy is similar to that of ESM, and 4 quality-differentiated components among different manufacturers are found. This method is stable and reliable, and has reference value for the quality evaluation of other dispensing granules.
8.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
9.Analysis of Treatment of Diabetic Kidney Disease with Modified Buyang Huanwutang Based on 5hmC-Seal Sequencing Technology
Baixin ZHEN ; Haoyu CHEN ; Duolikun MAIMAITIYASEN ; Xuehui LI ; Hong XIAO ; Xiaxuan LI ; Kuerban SUBINUER ; Lei ZHANG ; Hangyu CHEN ; Jian LIN ; Linlin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):208-217
ObjectiveTo improve the therapeutic effect of Buyang Huanwutang(BYHW) on diabetic kidney disease (DKD) and explore new methods for developing new Chinese medicine decoctions,we utilized 5-hydroxymethylcytosine (5hmC)-Seal sequencing technology and network pharmacology to modify BYHW. MethodsWe selected 14 diabetes mellitus (DM) patients and 15 DKD patients hospitalized in the Department of Endocrinology of Peking University Third Hospital in 2021. Circulating free DNA (cfDNA) in the patients’ plasma was sequenced. After data processing and screening, we performed temporal clustering analysis to select a DKD 5hmC gene set, which was then cross-validated with a DKD database gene set to obtain the DKD gene set. We retrieved target genes of the seven herbal components of BYHW from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Encyclopedia of Traditional Chinese Medicine (ETCM), and performed cross-analysis with the DKD gene set to identify common genes shared by the disease and the Chinese medicines. A protein-protein interaction (PPI) network was constructed for the common genes to screen out the key genes. Chinese medicines targeting these key genes were searched against ETCM to identify removable Chinese medicines. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed on non-common DKD genes, and key genes in DKD-related pathways were selected based on machine learning. The GSE30529 dataset was used to verify the expression trends of 5hmC-modified genes and the feasibility of target genes as drug targets. TCMBank was used to search for target genes and obtain compounds targeting these genes and the corresponding Chinese medicines to construct a "key target-compound-Chinese medicine" network. Molecular docking was employed to verify the binding affinity of compounds with key targets. TCMSP and ETCM were used to search and count the candidate Chinese medicines targeting DKD-related genes, and a new decoction was formed by adding the selected Chinese medicines. A mouse model of DKD was established to examine the efficacy of the new decoction based on the mouse body mass, random blood glucose, urinary microalbumin (mALB), serum creatinine (Scr), and blood urea nitrogen (BUN) and by hematoxylin-eosin staining, periodic acid-Schiff staining, Masson staining, immunofluorescence assay, and Real-time PCR. ResultsThe cross-analysis results showed that the DKD gene set included 507 genes, of which 30 were target genes of BYHW. The PPI analysis indicated that the top 15% target genes regarding the degree were interleukin-6 (IL-6), Toll-like receptor 4 (TLR4), lactotransferrin (LTF), lipoprotein lipase (LPL), and sterol regulatory element-binding transcription factor 1 (SREBF1). Persicae Semen and Pheretima in BYHW were unrelated to key genes and removed. Machine learning identified 10 potential target genes, among which TBC1 domain family member 5 (TBC1D5), RAD51 paralog B (RAD51B), and proteasome 20S subunit alpha 6 (PSMA6) had expression trends consistent with the GSE30529 dataset and could serve as drug targets. The "key target-compound-Chinese medicine" network and molecular docking results indicated that the compounds with good binding affinity to target proteins were arginine, glycine, myristicin, serine, and tyrosine, corresponding to 121 Chinese medicines. The top 10 Chinese medicines targeting DKD-related genes were Lycii Fructus, Ginseng Radix et Rhizoma, Dioscoreae Rhizoma, Rehmanniae Radix Praeparata, Isatidis Radix, Glehniae Radix, Ophiopogonis Radix, Allii Sativi Bulbus, Isatidis Folium, and Bolbostemmatis Rhizoma. Based on traditional Chinese medicine theory, the new decoction was obtained after removal of Persicae Semen and Pheretima and addition of Rehmanniae Radix Praeparata and Dioscoreae Rhizoma. Animal experiment results indicated that the modified BYHW improved the kidney function and inhibited renal fibrosis in DKD mice, with better effects than the original decoction. ConclusionThe BYHW modified based on 5hmC-Seal sequencing demonstrates better performance in inhibiting fibrosis and ameliorating DKD than the original decoction. This elucidates the biomedical theory behind the epigenetic modification of traditional Chinese medicine prescriptions, potentially offering new perspectives for the exploration of these prescriptions
10.Quality Evaluation of Chuanxiong Rhizoma Dispensing Granules Based on HPLC Specific Chromatogram and Two Reference Substances for Determination of Multiple Components
Jinxin LI ; Xue DONG ; Shuai DUAN ; Guiyun CAO ; Jinghua ZHANG ; Yongfu LUAN ; Yongqiang LIN ; Xiaodi DONG ; Zhaoqing MENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):246-253
ObjectiveTo establish the specific chromatogram of Chuanxiong Rhizoma dispensing granules(CRdg), and to evaluate its quality by chemometrics and two reference substances for determination of multiple components(TRSDMC). MethodsHigh performance liquid chromatography(HPLC) specific chromatograms were established using 13 batches of CRdg from 7 manufacturers, and preliminary quality evaluation was performed by similarity evaluation and chemometrics analysis. Eight characteristic peaks in the specific chromatogram of CRdg were measured on 22 different types of C18 columns, and the actual retention times were recorded. Taking chlorogenic acid(peak 1) and senkyunolide A(peak 8) as double standard compounds, the retention times of the eight characteristic peaks were predicted by linear calibration using two reference substances(LCTRS), and the method was validated on three other columns of different brands. Taking chlorogenic acid as reference peak, the relative correction factor method(RCFM) was used to quantify cryptochlorogenic acid, caffeic acid, ferulic acid, senkyunolide I and senkyunolide A, and the results were compared with the external standard method(ESM). ResultsThe similarities of specific chromatograms of 13 batches of CRdg were all >0.90, and a total of 8 characteristic peaks were calibrated, and six of them were identified, including chlorogenic acid(peak 1), cryptochlorogenic acid(peak 2), caffeic acid(peak 3), ferulic acid(peak 5), senkyunolide I(peak 6) and senkyunolide A(peak 8). Through chemometric analysis, it was found that ferulic acid, chlorogenic acid, senkyunolide I and cryptochlorogenic acid were the main components causing quality difference in CRdg, and the accuracy of LCTRS in predicting the retention time of 8 characteristic peaks was superior to that of the relative retention time method(RRT). Further comparison of the results obtained from RCFM and ESM showed that there was no statistically significant difference between the two methods. ConclusionA quality evaluation method for CRdg based on HPLC specific chromatogram and TRSDMC is established, its qualitative accuracy is better than that of RRT, the quantitative accuracy is similar to that of ESM, and 4 quality-differentiated components among different manufacturers are found. This method is stable and reliable, and has reference value for the quality evaluation of other dispensing granules.

Result Analysis
Print
Save
E-mail