1.Luteolin improves myocardial cell death induced by serum from rats with spinal cord injury
Wenwen ZHANG ; Mengru XU ; Yuan TIAN ; Lifei ZHANG ; Shu SHI ; Ning WANG ; Yuan YUAN ; Li WANG ; Haihu HAO
Chinese Journal of Tissue Engineering Research 2025;29(1):38-43
BACKGROUND:Cardiac dysfunction due to spinal cord injury is an important factor of death in patients with spinal cord injury;however,the specific mechanism is still not clear.Therefore,revealing the mechanism of cardiac dysfunction in spinal cord injury patients is of great significance to improve their quality of life and survival rate. OBJECTIVE:To investigate the mechanism of luteolin in improving serum-induced myocardial cell death in spinal cord injury rats. METHODS:Allen's impact instrument was used to damage the spine T9-T11 of male SD rats to establish a spinal cord injury model meanwhile a sham operation group was set as the control group.The serum of rats of each group was collected.H9c2 cells were divided into a blank control group,a sham operated rat serum group,a spinal cord injury rat serum group and a luteolin pretreatment group.The cells in blank control group were only cultured with ordinary culture medium.The cells in the sham operated rat serum group were treated with medium containing 10%serum from sham operated rat.The cells in the spinal cord injury rat serum group were treated with medium containing 10%serum from spinal cord injury rat.The cells in the luteolin pretreatment group were precultured with a final concentration of 20 μmol/L luteolin for 4 hours and then changed to a medium containing 10%rat serum from spinal cord injury rat.After 24 hours of culture,the survival rate of each group of H9c2 cells was measured by CCK-8 assay.Western blot assay was used to detect the expression of autophagy related protein LC3 and p62 in H9c2 cells in each group. RESULTS AND CONCLUSION:Compared with the blank control group,there was no significant change in cell survival rate in the sham operated rat serum group(P>0.05).Compared with the sham operated rat serum group,the cell survival rate(P<0.01)and the expression of LC3 protein(P<0.05)in spinal cord injury rat serum group was significantly reduced,and the expression of p62 protein was significantly increased(P<0.05).Compared with the spinal cord injury rat serum group,the survival rate of cells in the luteolin pretreatment group significantly increased(P<0.000 1);the expression of LC3 protein significantly increased(P<0.05),and the expression of p62 protein significantly decreased(P<0.05).The results indicate that luteolin may improve myocardial cell death induced by serum from rats with spinal cord injury by promoting autophagy.
2.Carnosic acid inhibits osteoclast differentiation by inhibiting mitochondrial activity
Haishan LI ; Yuheng WU ; Zixuan LIANG ; Shiyin ZHANG ; Zhen ZHANG ; Bin MAI ; Wei DENG ; Yongxian LI ; Yongchao TANG ; Shuncong ZHANG ; Kai YUAN
Chinese Journal of Tissue Engineering Research 2025;29(2):245-253
BACKGROUND:Carnosic acid,a bioactive compound found in rosemary,has been shown to reduce inflammation and reactive oxygen species(ROS).However,its mechanism of action in osteoclast differentiation remains unclear. OBJECTIVE:To investigate the effects of carnosic acid on osteoclast activation,ROS production,and mitochondrial function. METHODS:Primary bone marrow-derived macrophages from mice were extracted and cultured in vitro.Different concentrations of carnosic acid(0,10,15,20,25 and 30 μmol/L)were tested for their effects on bone marrow-derived macrophage proliferation and toxicity using the cell counting kit-8 cell viability assay to determine a safe concentration.Bone marrow-derived macrophages were cultured in graded concentrations and induced by receptor activator of nuclear factor-κB ligand for osteoclast differentiation for 5-7 days.The effects of carnosic acid on osteoclast differentiation and function were then observed through tartrate-resistant acid phosphatase staining,F-actin staining,H2DCFDA probe and mitochondrial ROS,and Mito-Tracker fluorescence detection.Western blot and RT-PCR assays were subsequently conducted to examine the effects of carnosic acid on the upstream and downstream proteins of the receptor activator of nuclear factor-κB ligand-induced MAPK signaling pathway. RESULTS AND CONCLUSION:Tartrate-resistant acid phosphatase staining and F-actin staining showed that carnosic acid dose-dependently inhibited in vitro osteoclast differentiation and actin ring formation in the cell cytoskeleton,with the highest inhibitory effect observed in the high concentration group(30 μmol/L).Carnosic acid exhibited the most significant inhibitory effect during the early stages(days 1-3)of osteoclast differentiation compared to other intervention periods.Fluorescence imaging using the H2DCFDA probe,mitochondrial ROS,and Mito-Tracker demonstrated that carnosic acid inhibited cellular and mitochondrial ROS production while reducing mitochondrial membrane potential,thereby influencing mitochondrial function.The results of western blot and RT-PCR revealed that carnosic acid could suppress the expression of NFATc1,CTSK,MMP9,and C-fos proteins associated with osteoclast differentiation,and downregulate the expression of NFATc1,Atp6vod2,ACP5,CTSK,and C-fos genes related to osteoclast differentiation.Furthermore,carnosic acid enhanced the expression of antioxidant enzyme proteins and reduced the generation of ROS during the process of osteoclast differentiation.Overall,carnosic acid exerts its inhibitory effects on osteoclast differentiation by inhibiting the phosphorylation modification of the P38/ERK/JNK protein and activating the MAPK signaling pathway in bone marrow-derived macrophages.
3.Risk Identification Model of Coronary Artery Stenosis Constructed Based on Random Forest
Yongfeng LV ; Yujing WANG ; Leyi ZHANG ; Yixin LI ; Na YUAN ; Jing TIAN
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):138-146
ObjectiveTo establish a risk recognition model for coronary artery stenosis by using a machine learning method and to identify the key causative factors. MethodsPatients aged ≥18 years,diagnosed with coronary heart disease through coronary angiography from January 2013 to May 2020 in two prominent hospitals in Shanxi Province, were continuously enrolled. Logistic regression,back propagation neural network (BPNN), and random forest(RF)algorithms were used to construct models for detecting the causative factors of coronary artery stenosis. Sensitivity (TPR), specificity (TNR), accuracy (ACC), positive predictive value (PV+), negative predictive value (PV-), area under subject operating characteristic curve (AUC), and calibration curve were used to compare the discrimination and calibration performance of the models. The best model was then employed to predict the main risk variables associated with coronary stenosis. ResultsThe RF model exhibited superior comprehensive performance compared to logistic regression and BPNN models. The TPR values for logistic regression,BPNN,and RF models were 75.76%, 74.30%, and 93.70%, while ACC values were 74.05%, 72.30%, and 79.49%, respectively. The AUC values were:logistic regression 0.739 9; BPNN 0.723 1; RF 0.752 2. Manifestations such as chest pains,abnormal ST segments on ECG,ventricular premature beats with hypertension, atrial fibrillation, regional wall motion abnormalities(RWMA) by color echocardiography, aortic regurgitation(AR), pulmonary insufficiency (PI), family history of cardiovascular diseases,and body mass index(BMI)were identified as top ten important variables affecting coronary stenosis according to the RF model. ConclusionsRandom forest model shows the best comprehensive performance in identification and accurate assessment of coronary artery stenosis. The prediction of risk factors affecting coronary artery stenosis can provide a scientific basis for clinical intervention and help to formulate further diagnosis and treatment strategies so as to delay the disease progression.
4.Association of monocyte/high-density lipoprotein cholesterol ratio with periodontitis: a cross-sectional study based on the NHANES database
HU Zhiqiang ; ZHANG Qi ; LI Xinpeng ; CUI Yuchen ; YUAN Jiamin ; ZHU Xianchun
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(3):212-220
Objective:
To investigate the association between monocyte to high-density lipoprotein cholesterol ratio (MHR) and periodontitis and to provide new epidemiologic evidence on the factors affecting periodontitis.
Methods:
Data on MHR, periodontitis, and other covariates were selected from the NHANES(National Health and Nutrition Examination) database for 3 cycles of subjects in 2009-2010, 2011-2012, and 2013-2014, and a total of 8 456 study subjects were included. The study participants were grouped according to the prevalence of periodontitis (presence or absence), and three regression models (unadjusted covariates, partially adjusted covariates, and fully adjusted covariates) were constructed to analyze the relationship between MHR and periodontitis by using a weighted logistic regression method with stepwise adjustment for confounders. MHR was divided into four groups from Q1 to Q4 according to quartiles from small to large for weighted trend analysis, and the nonlinear relationship between MHR (continuous) and periodontitis was analyzed using a restricted cubic spline with subgroup analysis and sensitivity analysis.
Results:
All three logistic regression models showed a positive association between MHR and periodontitis (OR = 2.92, 95%CI: 2.14-3.99, P<0.001 (not adjusted); OR = 1.97, 95%CI: 1.39-2.78, P<0.001 (partially adjusted); OR = 1.62, 95%CI: 1.10-2.39, P = 0.017 (fully adjusted)). Trend analysis showed a significantly higher risk of developing periodontitis in the Q4 group compared with the Q1 group in both single (OR = 1.92, 95% CI: 1.58-2.33, P<0.001) and multifactorial analyses (OR = 1.30, 95% CI: 1.03-1.64, P = 0.029). Restricted cubic spline results did not support a nonlinear relationship between MHR and periodontitis (P for nonlinear>0.05), subgroup analysis showed no significant interaction between the covariates and MHR (P>0.05), and sensitivity analysis also showed a positive correlation between MHR and periodontitis (OR = 1.67, 95%CI: 1.31-2.14, P<0.001).
Conclusion
MHR is positively associated with the risk of developing periodontitis.
5.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
6.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
7.Effect of islet macrophages on β-cell function changes during type 2 diabetes mellitus progression based on the "moderate fire generating qi, hyperactive fire consuming qi" theory
Yuying ZHANG ; Weiyu HUANG ; Haoyu YUAN ; Baohua WANG ; Saimei LI
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):14-20
This study examined the effect of islet macrophages on β-cell function changes during type 2 diabetes mellitus (T2DM) progression based on the traditional Chinese medicine theory that " moderate fire generating qi, hyperactive fire consuming qi" . T2DM is closely associated with chronic low-grade inflammation, with islet macrophages playing a central role in this process. Under physiological conditions, islet macrophages secrete anti-inflammatory and growth factors to regulate the immune response, promote cell proliferation, and support islet β-cell survival and function, reflecting the concept of " moderate fire generating qi" . However, during the pathological process of T2DM, islet macrophages become over-activated and dysfunctional, secreting large amounts of pro-inflammatory factors that trigger severe inflammatory responses and oxidative stress. This process damages islet β-cells, disrupts the islet microenvironment and blood supply, exacerbates local inflammation and structural damage, and worsens the survival environment of β-cells. Ultimately, this leads to fewer β-cells and function loss, aligning with the " hyperactive fire consuming qi" theory, where excessive fire depletes qi and blood. This study enhances the understanding and application of traditional Chinese medicine theories in modern medicine, offering a new perspective on T2DM prevention and treatment. Regulating islet macrophage function and reducing their pro-inflammatory responses may become key strategies for preserving β-cell function and slowing T2DM progression.
8.An Exploration of the Clinical Differentiation and Treatment Approach for Chong Mai Wei Bing (冲脉为病)
Yuan CHEN ; Zhenhua LI ; Xiaoke ZHANG
Journal of Traditional Chinese Medicine 2025;66(4):354-357
As a common pathological state in clinical practice, Chong Mai Wei Bing (冲脉为病) is typically manifested as rebellious qi and a sense of urgency. It often involves various diseases caused by the disorder of qi circulation. From the perspectives of theoretical foundation, pathological characteristics, and clinical differentiation and treatment, this paper elaborates on the characteristics of Chong Mai (冲脉) as the cause of disease, including three main manifestations: upward qi surge, upward yin fire, and upward water-qi. Among these, the upward qi surge is further categorized into four aspects: Chong Qi (冲气) counterflow, counterflow of stomach qi, counterflow of kidney qi, and counterflow of liver qi. Three major treatment methods are proposed: pacifying the Chong Mai and reversing the counterflow, consolidating Chong Mai to subdue fire, and warming Chong Mai to resolve qi and promote water flow. This paper summarizes its practical application in clinical diagnosis and treatment, aiming to deepen the understanding of the functional and pathological mechanisms of Chong Mai, and to provide insights and methods for the traditional Chinese medicine diagnosis and treatment of various diseases.
9.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
10.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.


Result Analysis
Print
Save
E-mail