1.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
2.Relationship between social support and depressive symptoms in patients with major depressive disorder: the pathway of empathy
Lan ZHU ; Jie LI ; Meijuan LI ; Ying GAO
Sichuan Mental Health 2025;38(2):166-171
BackgroundSocial support can help alleviate depressive symptoms in patients with major depressive disorder (MDD) and improve individual levels of empathy. The higher the level of empathy, the lower the probability of depressive symptoms. At present, the relationship between social support, empathy and depressive symptoms in MDD patients is unclear. ObjectiveTo explore the pathway of empathy in the relationship between social support and depressive symptoms in patients with MDD, so as to provide references for clinical treatment of MDD patients. MethodsA total of 126 patients who visited the outpatient clinic of Tianjin Anding hospital from July 2020 to September 2022 and met the diagnostic criteria for Major Depressive Disorder (MDD) according to the Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5) were selected as the study subjects. Hamilton Depression Scale-17 item (HAMD-17), Interpersonal Reactivity Index (IRI) and Social Support Rating Scale (SSRS) were used for assessment. Pearson correlation analysis was conducted to examine the correlations among the scale scores. Path analysis was performed using Model 4 of the Process 3.4.1. Bootstrap method was used to test the path effects. ResultsAmong MDD patients, HAMD-17 total score was positively correlated with IRI total score and its subscales of fantasy and personal distress (r=0.225, 0.213, 0.220, P<0.05). HAMD-17 total score was negatively correlated with SSRS total score and its subscales of subjective support and support utilization (r=-0.211, -0.181, -0.208, P<0.05). The score of support utilization subscale of SSRS was positively correlated with IRI total score and its subscale of perspective taking and empathic concern (r=0.257, 0.261, 0.331, P<0.01). Empathy served as a pathway between support utilization and depressive symptoms, with an indirect effect of 0.217 (95% CI: 0.060~0.426), and the effect size was 36.90%. ConclusionEmpathy may serve as a pathway between support utilization and depressive symptoms in patients with MDD.
3.Establishment and Evaluation of Mouse Model of Ischemic Heart Disease with Qi and Yin Deficiency Syndrome Based on Proteomics
Qiuyan ZHANG ; Ying LI ; Yunxiao GAO ; Longxiao HU ; Yue YUAN ; Xiaoxiao CHEN ; Yali SHI ; Junguo REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):52-61
ObjectiveTo explore the optimal construction method and the biological basis for establishing a mouse model of ischemic heart disease(IHD) with Qi and Yin deficiency syndrome by intraperitoneal injection of isoproterenol(ISO). MethodsA total of 144 male C57BL/6J mice were randomly assigned into three normal groups and nine model groups according to body mass, with 12 mice in each group. The model groups 1, 4, and 7 were administered ISO via intraperitoneal injection at a dose of 5 mg·kg-1·d-1 for four consecutive days, the model groups 2, 5, and 8 received ISO at a dose of 10 mg·kg-1·d-1 for seven consecutive days, while the model groups 3, 6, and 9 were given ISO at a dose of 15 mg·kg-1·d-1 for 14 consecutive days. The normal groups were administered an equivalent volume of normal saline via intraperitoneal injection. After the modeling process, body mass, 24-hour food and water intake, grip strength, and spontaneous activity of the mice were measured. Cardiac function was assessed using echocardiography, the serum levels of norepinephrine(NE), cyclic adenosine monophosphate(cAMP), and cyclic guanosine monophosphate(cGMP) were determined via enzyme-linked immunosorbent assay(ELISA). The content of adenosine triphosphate(ATP) in myocardial tissue was measured by biochemical analysis, while histopathological changes in myocardial tissue were observed via hematoxylin-eosin(HE) staining. An orthogonal experimental design was applied for intuitive analysis and variance analysis to screen the optimal modeling conditions of the mouse model of IHD with Qi and Yin deficiency syndrome. A data-dependent acquisition(DDA) proteomic technique was employed to quantitatively detect differentially expressed proteins in myocardial tissue between the optimal model group and the normal group. And bioinformatics analysis was conducted to explore the potential biological mechanisms underlying the Qi and Yin deficiency model of IHD. ResultsOrthogonal results showed that the injection cycle had a great influence on model establishment, and the optimal modeling condition was identified as intraperitoneal injection of ISO at 15 mg·kg-1·d-1 for 14 consecutive days. Under this condition, compared with the normal group, the model group demonstrated significant reductions in body mass, food intake, water intake, grip strength, total distance and average speed of exercise, ejection fraction(EF), fractional shortening(FS), serum levels of NE and cGMP, and myocardial ATP content(P<0.01), while immobility time, cAMP level, and the cAMP/cGMP value were significantly increased(P<0.05, P<0.01). HE staining results revealed that myocardial tissue in the model group had disordered cell arrangement, inflammatory cell infiltration, myocardial fiber rupture, and fibrous tissue proliferation. Proteomic analysis identified 141 differentially expressed proteins in the model group compared with the normal group, with 52 up-regulated and 89 down-regulated. Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis indicated that the cellular components(CC) were mainly related to mitochondria and the inner mitochondrial membrane, the biological processes(BP) were associated with complement activation, platelet activation, and responses to metal ions, suggesting that the potential functional pathways involved the complement and coagulation cascade, as well as porphyrin metabolism. ConclusionContinuous intraperitoneal injection of ISO at a dose of 15 mg·kg-1 for 14 days successfully establishes a mouse model of IHD with Qi and Yin deficiency syndrome, and the underlying mechanisms may be related to the regulation of iron ions by complement C3, C5 and Cp, and plays a role in the regulation through the BP of complement activation, platelet activation, and responses to metal ions, and the signaling pathways of the complement and coagulation cascade and porphyrin metabolism.
4.Establishment and Evaluation of Mouse Model of Ischemic Heart Disease with Qi and Yin Deficiency Syndrome Based on Proteomics
Qiuyan ZHANG ; Ying LI ; Yunxiao GAO ; Longxiao HU ; Yue YUAN ; Xiaoxiao CHEN ; Yali SHI ; Junguo REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):52-61
ObjectiveTo explore the optimal construction method and the biological basis for establishing a mouse model of ischemic heart disease(IHD) with Qi and Yin deficiency syndrome by intraperitoneal injection of isoproterenol(ISO). MethodsA total of 144 male C57BL/6J mice were randomly assigned into three normal groups and nine model groups according to body mass, with 12 mice in each group. The model groups 1, 4, and 7 were administered ISO via intraperitoneal injection at a dose of 5 mg·kg-1·d-1 for four consecutive days, the model groups 2, 5, and 8 received ISO at a dose of 10 mg·kg-1·d-1 for seven consecutive days, while the model groups 3, 6, and 9 were given ISO at a dose of 15 mg·kg-1·d-1 for 14 consecutive days. The normal groups were administered an equivalent volume of normal saline via intraperitoneal injection. After the modeling process, body mass, 24-hour food and water intake, grip strength, and spontaneous activity of the mice were measured. Cardiac function was assessed using echocardiography, the serum levels of norepinephrine(NE), cyclic adenosine monophosphate(cAMP), and cyclic guanosine monophosphate(cGMP) were determined via enzyme-linked immunosorbent assay(ELISA). The content of adenosine triphosphate(ATP) in myocardial tissue was measured by biochemical analysis, while histopathological changes in myocardial tissue were observed via hematoxylin-eosin(HE) staining. An orthogonal experimental design was applied for intuitive analysis and variance analysis to screen the optimal modeling conditions of the mouse model of IHD with Qi and Yin deficiency syndrome. A data-dependent acquisition(DDA) proteomic technique was employed to quantitatively detect differentially expressed proteins in myocardial tissue between the optimal model group and the normal group. And bioinformatics analysis was conducted to explore the potential biological mechanisms underlying the Qi and Yin deficiency model of IHD. ResultsOrthogonal results showed that the injection cycle had a great influence on model establishment, and the optimal modeling condition was identified as intraperitoneal injection of ISO at 15 mg·kg-1·d-1 for 14 consecutive days. Under this condition, compared with the normal group, the model group demonstrated significant reductions in body mass, food intake, water intake, grip strength, total distance and average speed of exercise, ejection fraction(EF), fractional shortening(FS), serum levels of NE and cGMP, and myocardial ATP content(P<0.01), while immobility time, cAMP level, and the cAMP/cGMP value were significantly increased(P<0.05, P<0.01). HE staining results revealed that myocardial tissue in the model group had disordered cell arrangement, inflammatory cell infiltration, myocardial fiber rupture, and fibrous tissue proliferation. Proteomic analysis identified 141 differentially expressed proteins in the model group compared with the normal group, with 52 up-regulated and 89 down-regulated. Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis indicated that the cellular components(CC) were mainly related to mitochondria and the inner mitochondrial membrane, the biological processes(BP) were associated with complement activation, platelet activation, and responses to metal ions, suggesting that the potential functional pathways involved the complement and coagulation cascade, as well as porphyrin metabolism. ConclusionContinuous intraperitoneal injection of ISO at a dose of 15 mg·kg-1 for 14 days successfully establishes a mouse model of IHD with Qi and Yin deficiency syndrome, and the underlying mechanisms may be related to the regulation of iron ions by complement C3, C5 and Cp, and plays a role in the regulation through the BP of complement activation, platelet activation, and responses to metal ions, and the signaling pathways of the complement and coagulation cascade and porphyrin metabolism.
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
7.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
8.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
9.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
10.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.

Result Analysis
Print
Save
E-mail