1.Correlation between brain white matter lesions and insulin resistance in non-diabetic elderly individuals based on magnetic resonance imaging
Mei LI ; Fang YUAN ; Xizi XING ; Feng XIE ; Hua ZHANG
Chinese Journal of Radiological Health 2025;34(1):96-101
Objective To investigate the relationship between brain white matter lesions (WML) and triglyceride glucose (TyG) index in non-diabetic elderly individuals based on magnetic resonance imaging. Methods A total of 523 non-diabetic elderly individuals aged ≥ 60 years were selected from Jinan, Shandong Province, China from June 2018 to December 2019. According to the quartiles of TyG index, there were 133 participants in the first quartile (Q1) group, 127 in the second quartile (Q2) group, 132 in the third quartile (Q3) group, and 131 in the fourth quartile (Q4) group. All participants underwent brain magnetic resonance imaging to evaluate paraventricular, deep, and total WML volumes, as well as Fazekas scores. Results Compared with Q1, Q2, and Q3 groups, Q4 group showed significant increase in periventricular, deep, and total WML volumes (P < 0.05). The proportion of participants with a Fazekas score ≥ 2 in the periventricular, deep, and total WML was higher in the Q4 group compared with the Q1 and Q2 groups (P < 0.05). The proportion of participants with a Fazekas score ≥ 2 in deep WML was higher in Q4 group than in Q3 group (P < 0.05). TyG index was significantly positively correlated with periventricular, deep, and total WML volumes (r = 0.401, 0.405, and 0.445, P < 0.001). After adjusting for confounding factors, TyG index was still significantly positively correlated with periventricular, deep, and total WML volumes (P < 0.001). Logistic regression analysis showed that compared with Q1 group, the risk of Fazekas score ≥ 2 in periventricular WML was 1.950-fold (95% confidence interval [CI]: 1.154-3.294, P = 0.013) in Q3 group and 3.411-fold (95% CI: 1.984-5.863, P < 0.001) in Q4 group, the risk of Fazekas score ≥ 2 in total WML was 2.529-fold (95%CI: 1.444-4.430, P = 0.001) in Q3 group and 4.486-fold (95%CI: 2.314-8.696, P < 0.001) in Q4 group. The risk of Fazekas score ≥ 2 in deep WML was 2.953-fold (95%CI: 1.708-5.106, P < 0.001) in Q4 group compared with Q1 group. Conclusion Increased TyG index is an independent risk factor for WML in non-diabetic elderly individuals.
2.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
3.Application status and research progress of tranexamic acid in the perioperative period of joint replacement and arthroscopic surgery
Bao-Hua YUAN ; Hai-Ping LIU ; Xing-Yong LI ; Xiao-Ting LIU ; Ji-Hai MA ; Xu-Sheng ZHANG ; Hao-Fei YANG ; Jin-Sheng LI ; Sheng-Long HAN
The Chinese Journal of Clinical Pharmacology 2024;40(7):1080-1084
Tranexamic acid is widely used in joint orthopedic surgery.At the same time,it has high safety and few adverse drug reactions.It can effectively improve intraoperative bleeding and promote early functional recovery of patients.This article reviews the mode of administration,safe dose,administration time and adverse drug reactions of tranexamic acid in the perioperative period of joint replacement and arthroscopic surgery,in order to provide reference for the clinical application of tranexamic acid.
4.Study on the value of screening cytokines in pleural effusion by liquid array technology in the diagnosis of tuberculous pleurisy
Fengjiao DU ; Boping DU ; Hongyan JIA ; Aiying XING ; Zihui LI ; Chuanzhi ZHU ; Hua LI
Tianjin Medical Journal 2024;52(3):319-323
Objective To screen the specific cytokines of tuberculous pleural effusion(plTB)by using liquid array technique to establish a diagnostic model and discuss its application value.Methods A total of 86 patients with plTB(plTB group)were included,including 41 patients in the confirmed plTB group and 45 patients in the clinically diagnosed plTB group.There were 42 other patients with pleural effusion in the control group.Seventeen cytokines in pleural effusion were analyzed by liquid array technology.Interleukin(IL)-1β,IL-2,IL-4,IL-5,IL-6,IL-8,IL-9,IL-10,gamma-interferon-induced protein 10(IP-10),IL-15,IL-17F,IL-27,tumor necrosis factor(TNF)-α,monocyte chemotactic protein-1(MCP-1),the expression levels of macrophage inflammatory protein-3a(MIP-3α),macrophage colony-stimulating factor(M-CSF)and β-interferon(IFN-β)were detected.Difference factors between the confirmed plTB group and the control group were screened,and the receiver operating characteristic(ROC)curve was drawn in the confirmed plTB patients.IP-10,IL-27 and MCP-1 with AUC>0.850 and specificity>80%were combined to diagnose plTB,and were compared with adenylate deaminase(ADA)and T-SPOT.TB in pleural effusion to evaluate the diagnostic efficacy.Results The levels of IL-2,IP-10,IL-27,TNF-α and MCP-1 were higher in the confirmed plTB group than those in the control group(P<0.05).The sensitivity and specificity of IP-10,IL-27 and MCP-1 in the diagnosis of plTB were 87.8%and 81.0%.The sensitivity of three-factor combined diagnosis in 45 patients with plTB was still as high as 86.7%,and there was no significant difference in sensitivity compared with that in the diagnosed plTB group(P>0.05).In the plTB group,the sensitivity of IP-10,IL-27 and MCP-1 combined detection was 87.2%,which was higher than that of T-SPOT.TB(81.4%)and ADA(54.7%).Conclusion The application of liquid array technology to the joint detection of pleural effusion IP-10,IL-27 and MCP-1 can provide help for the diagnosis of plTB.
5.High-throughput screening of novel TFEB agonists in protecting against acetaminophen-induced liver injury in mice.
Xiaojuan CHAO ; Mengwei NIU ; Shaogui WANG ; Xiaowen MA ; Xiao YANG ; Hua SUN ; Xujia HU ; Hua WANG ; Li ZHANG ; Ruili HUANG ; Menghang XIA ; Andrea BALLABIO ; Hartmut JAESCHKE ; Hong-Min NI ; Wen-Xing DING
Acta Pharmaceutica Sinica B 2024;14(1):190-206
Macroautophagy (referred to as autophagy hereafter) is a major intracellular lysosomal degradation pathway that is responsible for the degradation of misfolded/damaged proteins and organelles. Previous studies showed that autophagy protects against acetaminophen (APAP)-induced injury (AILI) via selective removal of damaged mitochondria and APAP protein adducts. The lysosome is a critical organelle sitting at the end stage of autophagy for autophagic degradation via fusion with autophagosomes. In the present study, we showed that transcription factor EB (TFEB), a master transcription factor for lysosomal biogenesis, was impaired by APAP resulting in decreased lysosomal biogenesis in mouse livers. Genetic loss-of and gain-of function of hepatic TFEB exacerbated or protected against AILI, respectively. Mechanistically, overexpression of TFEB increased clearance of APAP protein adducts and mitochondria biogenesis as well as SQSTM1/p62-dependent non-canonical nuclear factor erythroid 2-related factor 2 (NRF2) activation to protect against AILI. We also performed an unbiased cell-based imaging high-throughput chemical screening on TFEB and identified a group of TFEB agonists. Among these agonists, salinomycin, an anticoccidial and antibacterial agent, activated TFEB and protected against AILI in mice. In conclusion, genetic and pharmacological activating TFEB may be a promising approach for protecting against AILI.
6.The Application of Lipid Nanoparticle-delivered mRNA in Disease Prevention and Treatment
Wei-Lun SUN ; Ti-Qiang ZHOU ; Hai-Yin YANG ; Lu-Wei LI ; Yu-Hua WENG ; Jin-Chao ZHANG ; Yuan-Yu HUANG ; Xing-Jie LIANG
Progress in Biochemistry and Biophysics 2024;51(10):2677-2693
In recent years, nucleic acid therapy, as a revolutionary therapeutic tool, has shown great potential in the treatment of genetic diseases, infectious diseases and cancer. Lipid nanoparticles (LNPs) are currently the most advanced mRNA delivery carriers, and their emergence is an important reason for the rapid approval and use of COVID-19 mRNA vaccines and the development of mRNA therapy. Currently, mRNA therapeutics using LNP as a carrier have been widely used in protein replacement therapy, vaccines and gene editing. Conventional LNP is composed of four components: ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG) lipids, which can effectively load mRNA to improve the stability of mRNA and promote the delivery of mRNA to the cytoplasm. However, in the face of the complexity and diversity of clinical diseases, the structure, properties and functions of existing LNPs are too homogeneous, and the lack of targeted delivery capability may result in the risk of off-targeting. LNPs are flexibly designed and structurally stable vectors, and the adjustment of the types or proportions of their components can give them additional functions without affecting the ability of LNPs to deliver mRNAs. For example, by replacing and optimizing the basic components of LNP, introducing a fifth component, and modifying its surface, LNP can be made to have more precise targeting ability to reduce the side effects caused by treatment, or be given additional functions to synergistically enhance the efficacy of mRNA therapy to respond to the clinical demand for nucleic acid therapy. It is also possible to further improve the efficiency of LNP delivery of mRNA through machine learning-assisted LNP iteration. This review can provide a reference method for the rational design of engineered lipid nanoparticles delivering mRNA to treat diseases.
7.Efficacy and safety of nicorandil and ticagrelor de-escalation after percutaneous coronary intervention for elderly patients with acute coronary syndrome
Xiang SHAO ; Ning BIAN ; Hong-Yan WANG ; Hai-Tao TIAN ; Can HUA ; Chao-Lian WU ; Bei-Xing ZHU ; Rui CHEN ; Jun-Xia LI ; Tian-Chang LI ; Lu MA
Medical Journal of Chinese People's Liberation Army 2024;49(1):75-81
Objective To explore the efficacy and safety of ticagrelor de-escalation and nicorandil therapy in elderly patients with acute coronary syndrome(ACS)after percutaneous coronary intervention(PCI).Methods A total of 300 elderly patients with ACS were selected from the Sixth and Seventh Medical Center of Chinese PLA General Hospital and Beijing Chaoyang Integrative Medicine Emergency Rescue and First Aid Hospital from November 2016 to June 2019,including 153 males and 147 females,aged>65 years old.All the patients received PCI,and all had double antiplatelet therapy(DAPT)scores≥2 and a new DAPT(PRECISE-DAPT)score of≥25.All patients were divided into two groups by random number table method before operation:ticagrelor group(n=146,ticagrelor 180 mg load dose followed by PCI,and ticagrelor 90 mg bid after surgery)and ticagrelor de-escalation + nicorandil group(n=154,ticagrelor 180 mg load dose followed by PCI,ticagrelor 90 mg bid+nicorandil 5 mg tid after surgery,changed to ticagrelor 60 mg bid+ nicorandil 5 mg tid 6 months later).Follow-up was 12 months.The composite end points of cardiovascular death,myocardial infarction and stroke,the composite end points of mild hemorrhage,minor hemorrhage,other major hemorrhage and major fatal/life-threatening hemorrhage as defined by the PLATO study,and the composite end points of cardiovascular death,myocardial infarction,stroke and bleeding within 12 months in the two groups were observed.Results The comparison of general baseline data between the two groups showed no statistically significant difference(P>0.05).There was also no significant difference in the composite end points of cardiovascular death,myocardial infarction and stroke between the two groups(P>0.05).The cumulative incidence of bleeding events in ticagrelor de-escalation + nicorandil group was significantly lower than that in ticagrelor group(P<0.05),while the composite end points of cardiovascular death,myocardial infarction,stroke and bleeding were also significantly lower than those in tecagrelor group(P<0.05).Conclusion In elderly patients with ACS,the treatment of ticagrelor de-escalation + nicorandil after PCI may not increase the incidence of ischemic events such as cardiovascular death,myocardial infarction or stroke,and it may reduce the incidence of hemorrhagic events.
8.Relationship between cerebrovascular reserve capacity and white matter lesions in the elderly based on magnetic resonance imaging
Lihong LUO ; Wenru GONG ; Mei LI ; Xizi XING ; Hua ZHANG
Chinese Journal of Radiological Health 2024;33(1):101-105
Objective To investigate the relationship between cerebrovascular reserve (CVR) capacity and white matter lesions in elderly people. Methods We included 315 participants aged ≥ 60 years in Jinan area of Shandong Province from May 2018 to July 2019. They underwent transcranial Doppler ultrasonography for assessing CVR, breath holding index (BHI), and arterial pulsatility index (PI). According to CVR capacity, they were divided into normal CVR group (CVR ≥ 20%, n = 206) and impaired CVR group (CVR < 20%, n = 109). Magnetic resonance imaging was performed to evaluate periventricular, subcortical, and total white matter hyperintensity (WMH) volumes and Fazekas scores. Results Compared with the normal CVR group, the impaired CVR group showed significantly higher volumes of periventricular, subcortical, and total WMHs and significantly higher proportions of Fazekas scores ≥ 2 (P < 0.01). Periventricular, subcortical, and total WMH volumes were negatively correlated with CVR (r = −0.70, −0.66, −0.73, P < 0.01) and BHI (r = −0.64, −0.65, −0.68, P < 0.01) and positively correlated with PI (r = 0.60, 0.65, 0.65, P < 0.01). After adjusting for confounding factors, periventricular, subcortical, and total WMH volumes were still negatively correlated with CVR and BHI (P < 0.01) and positively correlated with PI (P < 0.01). The logistic regression analysis showed that the risks of periventricular, subcortical, and total Fazekas score ≥ 2 in the impaired CVR group were 1.96 times (95% confidence interval [CI]: 1.17−3.27, P < 0.01), 1.84 times (95% CI: 1.11−3.05, P < 0.05), and 2.33 times (95% CI: 1.30−4.18, P < 0.01) that of the normal CVR group, respectively. Conclusion Impaired CVR is an independent risk factor for white matter lesions in the elderly.
9. Effects of metabolites of eicosapentaenoic acid on promoting transdifferentiation of pancreatic OL cells into pancreatic β cells
Chao-Feng XING ; Min-Yi TANG ; Qi-Hua XU ; Shuai WANG ; Zong-Meng ZHANG ; Zi-Jian ZHAO ; Yun-Pin MU ; Fang-Hong LI
Chinese Pharmacological Bulletin 2024;40(1):31-38
Aim To investigate the role of metabolites of eicosapentaenoic acid (EPA) in promoting the transdifferentiation of pancreatic α cells to β cells. Methods Male C57BL/6J mice were injected intraperitoneally with 60 mg/kg streptozocin (STZ) for five consecutive days to establish a type 1 diabetes (T1DM) mouse model. After two weeks, they were randomly divided into model groups and 97% EPA diet intervention group, 75% fish oil (50% EPA +25% DHA) diet intervention group, and random blood glucose was detected every week; after the model expired, the regeneration of pancreatic β cells in mouse pancreas was observed by immunofluorescence staining. The islets of mice (obtained by crossing GCG
10.Experts consensus on standard items of the cohort construction and quality control of temporomandibular joint diseases (2024)
Min HU ; Chi YANG ; Huawei LIU ; Haixia LU ; Chen YAO ; Qiufei XIE ; Yongjin CHEN ; Kaiyuan FU ; Bing FANG ; Songsong ZHU ; Qing ZHOU ; Zhiye CHEN ; Yaomin ZHU ; Qingbin ZHANG ; Ying YAN ; Xing LONG ; Zhiyong LI ; Yehua GAN ; Shibin YU ; Yuxing BAI ; Yi ZHANG ; Yanyi WANG ; Jie LEI ; Yong CHENG ; Changkui LIU ; Ye CAO ; Dongmei HE ; Ning WEN ; Shanyong ZHANG ; Minjie CHEN ; Guoliang JIAO ; Xinhua LIU ; Hua JIANG ; Yang HE ; Pei SHEN ; Haitao HUANG ; Yongfeng LI ; Jisi ZHENG ; Jing GUO ; Lisheng ZHAO ; Laiqing XU
Chinese Journal of Stomatology 2024;59(10):977-987
Temporomandibular joint (TMJ) diseases are common clinical conditions. The number of patients with TMJ diseases is large, and the etiology, epidemiology, disease spectrum, and treatment of the disease remain controversial and unknown. To understand and master the current situation of the occurrence, development and prevention of TMJ diseases, as well as to identify the patterns in etiology, incidence, drug sensitivity, and prognosis is crucial for alleviating patients′suffering.This will facilitate in-depth medical research, effective disease prevention measures, and the formulation of corresponding health policies. Cohort construction and research has an irreplaceable role in precise disease prevention and significant improvement in diagnosis and treatment levels. Large-scale cohort studies are needed to explore the relationship between potential risk factors and outcomes of TMJ diseases, and to observe disease prognoses through long-term follw-ups. The consensus aims to establish a standard conceptual frame work for a cohort study on patients with TMJ disease while providing ideas for cohort data standards to this condition. TMJ disease cohort data consists of both common data standards applicable to all specific disease cohorts as well as disease-specific data standards. Common data were available for each specific disease cohort. By integrating different cohort research resources, standard problems or study variables can be unified. Long-term follow-up can be performed using consistent definitions and criteria across different projects for better core data collection. It is hoped that this consensus will be facilitate the development cohort studies of TMJ diseases.

Result Analysis
Print
Save
E-mail