1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Short- to medium-term safety and efficacy of the implantable Corheart 6 left ventricular assist system in patients with end-stage heart failure
Zhibing QIU ; Xiaochun SONG ; Liangpeng LI ; Hongwei SHI ; Liqiong XIAO ; Yunzhang WU ; Xiaosong RONG ; Jidan FAN ; Liang WEI ; Xin CHEN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):639-645
Objective To investigate the efficacy and safety of the Corheart 6 left ventricular assist system in patients with end-stage heart failure. Methods A retrospective study was conducted on patients with end-stage heart failure who were treated with Corheart 6 left ventricular assist system from March 2022 to June 2024 in 4 hospitals in Jiangsu Province. The efficacy of the device was evaluated by comparing changes in clinical indicators at preoperative, discharge, 3-month postoperative, and 6-month postoperative timepoints, including the New York Heart Association (NYHA) functional classification, left ventricular ejection fraction (LVEF), and left ventricular end-diastolic diameter (LVEDD). The safety of the device was assessed by analyzing the intraoperative position and orientation of the blood pump inlet cannula, as well as the incidence of adverse events. Results In this study, 39 patients were collected, including 34 males and 5 females with a mean age of (56.4±12.5) years, ranging from 20 to 75 years. There was no operative death. There was no death in postoperative 3 months with a survival rate of 100.0%. There were 3 deaths in 6 months postoperatively, with a survival rate of 92.3%. All patients had a preoperative NYHA cardiac function classification of class Ⅳ. The NYHA cardiac function class of the patients improved (P<0.05) at discharge, 3 and 6 months after surgery when compared to the preoperative period. LVEF was significantly higher at 3 months after surgery than that during the preoperative period (P<0.05). LVEDD was significantly smaller at discharge, 3 and 6 months after surgery than that during the preoperative period (P<0.05). The safety evaluation's findings demonstrated that all 39 patients' intraoperative blood pump inlet tubes were oriented correctly, the artificial blood vessel suture sites were appropriate, there were no instances of device malfunction or pump thrombosis, or instances of bleeding or hemolysis, and the rate of the remaining adverse events was low. Conclusion With a low rate of adverse events and an excellent safety profile, the Corheart 6 left ventricular assist system can efficiently enhance cardiac function in patients with end-stage heart failure. It also has considerable clinical uses.
5.Effect and mechanism of combined use of active components of Buyang Huanwu Decoction in ameliorating neuronal injury induced by OGD/R.
Cun-Yan DAN ; Meng-Wei RONG ; Xiu LOU ; Tian-Qing XIA ; Bao-Guo XIAO ; Hong GUO ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(4):1098-1110
Buyang Huanwu Decoction(BYHWD), as one of the classic formulas in traditional Chinese medicine(TCM) for the treatment of cerebral ischemic stroke(CIS), has demonstrated definite effects in clinical practice. However, the material basis and mechanism of treatment have not been systematically elucidated. This study employed network pharmacology and molecular docking to analyze the potential targets and mechanisms of blood-and brain-penetrating active components of BYHWD in reducing cell apoptosis in CIS. Cell experiments were then carried out to validate the prediction results. In the experiments, five active components including hydroxysafflor yellow A( HSYA), tetramethylpyrazine( TMP), astragaloside Ⅳ( AS-Ⅳ), amygdalin( AMY), and paeoniflorin(PF) were selected to explore the pharmacological effects of BYHWD. HT22 cells were treated with BYHWD, and the cell counting kit-8(CCK-8) method was employed to examine the toxic and side effects of BYHWD. A cell model of oxygen-glucose deprivation/reoxygenation( OGD/R) was constructed, with apoptosis and pyroptosis as the main screening indicators. The levels of lactate dehydrogenase(LDH) and glutathione(GSH) were measured to assess the cell membrane integrity. Flow cytometry was employed to detect apoptosis, and the activities of caspase-3 and caspase-1 were measured to clarify the status of apoptosis and pyroptosis. ELISA was employed to determine the levels of interleukin(IL)-1β and IL-18 to confirm pyroptosis. HSYA and AMY were identified in this study as the active components regulating apoptosis and pyroptosis. TUNEL was employed to detect the apoptosis rate, and Western blot was employed to determine the expression levels of apoptosis-related proteins B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and caspase-3, which confirmed that the anti-apoptotic effect of the combined component group was superior to that of the single component groups. The molecular docking results revealed strong binding affinity of HSYA and AMY with SDF-1α and CXCR4.AMD3100, a selective antagonist of CXCR4, was then used for intervention. The results of Western blot showed alterations in the expression levels of apoptosis-associated proteins, SDF-1α, and CXCR4. In conclusion, HSYA and AMY influence cellular apoptosis by modulating the SDF-1α/CXCR4 signaling cascade.
Drugs, Chinese Herbal/chemistry*
;
Apoptosis/drug effects*
;
Animals
;
Neurons/cytology*
;
Mice
;
Molecular Docking Simulation
;
Cell Line
;
Glucose/metabolism*
;
Humans
;
Neuroprotective Agents/pharmacology*
6.Mechanism of action of ginsenoside Rg_2 on diabetic retinopathy and angiogenesis based on YAP/TLRs pathway.
Zhuo-Rong LIU ; Yong-Li SONG ; Shang-Qiu NING ; Yue-Ying YUAN ; Yu-Ting ZHANG ; Gai-Mei HAO ; Jing HAN
China Journal of Chinese Materia Medica 2025;50(6):1659-1669
Ginsenoside Rg_2(GRg2) is a triterpenoid compound found in Panax notoginseng. This study explored its effects and mechanisms on diabetic retinopathy and angiogenesis. The study employed endothelial cell models induced by glucose or vascular endothelial growth factor(VEGF), the chorioallantoic membrane(CAM) model, the oxygen-induced retinopathy(OIR) mouse model, and the db/db mouse model to evaluate the therapeutic effects of GRg2 on diabetic retinopathy and angiogenesis. Transwell assays and endothelial tube formation experiments were conducted to assess cell migration and tube formation, while vascular area measurements were applied to detect angiogenesis. The impact of GRg2 on the retinal structure and function of db/db mice was evaluated through retinal thickness and electroretinogram(ERG) analyses. The study investigated the mechanisms of GRg2 by analyzing the activation of Yes-associated protein(YAP) and Toll-like receptors(TLRs) pathways. The results indicated that GRg2 significantly reduced cell migration numbers and tube formation lengths in vitro. In the CAM model, GRg2 exhibited a dose-dependent decrease in the vascular area ratio. In the OIR model, GRg2 notably decreased the avascular and neovascular areas, ameliorating retinal structural disarray. In the db/db mouse model, GRg2 increased the total retinal thickness and enhanced the amplitudes of the a-wave, b-wave, and oscillatory potentials(OPs) in the ERG, improving retinal structural disarray. Transcriptomic analysis revealed that the TLR signaling pathway was significantly down-regulated following YAP knockdown, with PCR results consistent with the transcriptome sequencing findings. Concurrently, GRg2 downregulated the expression of Toll-like receptor 4(TLR4), TNF receptor-associated factor 6(TRAF6), and nuclear factor-kappaB(NF-κB) proteins in high-glucose-induced endothelial cells. Collectively, GRg2 inhibits cell migration and tube formation and significantly reduces angiogenesis in CAM and OIR models, improving retinal structure and function in db/db mice, with its pharmacological mechanism likely involving the down-regulation of YAP expression.
Animals
;
Ginsenosides/pharmacology*
;
Diabetic Retinopathy/physiopathology*
;
Mice
;
YAP-Signaling Proteins
;
Humans
;
Male
;
Signal Transduction/drug effects*
;
Cell Movement/drug effects*
;
Adaptor Proteins, Signal Transducing/genetics*
;
Mice, Inbred C57BL
;
Neovascularization, Pathologic/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Panax notoginseng/chemistry*
;
Endothelial Cells/metabolism*
;
Transcription Factors/genetics*
;
Angiogenesis
7.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
8.A case-control study of shoulder arthroscopic double row and single row technique for the treatment of Ideberg type ⅠA scapular glenoid fracture.
Zhe-Yuan SHEN ; Rong WU ; Qiao-Ying PENG ; Heng LI ; Song-Hua GUO ; Zhan-Feng ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(3):223-230
OBJECTIVE:
To compare clinical effect of arthroscopic double row fixation and single row fixation in treating Ideberg typeⅠA scapular glenoid fracture.
METHODS:
From June 2018 to December 2022, 26 patients with Ideberg typeⅠA scapular glenoid fracture treated with shoulder arthroscopy were divided into single-row anchor group and double-row anchor group according to the fixation method of fracture block. There were 12 patients in single-row anchor group, including 7 males and 5 females, aged from 25 to 53 years old with an average of (38.42±9.61) years old;the time from injury to operation ranged from 2 to 7 days with an average of (4.75±1.82) days. There were 14 patients in double-row anchor group, including 10 males and 4 females, aged from 21to 53 years old with an average of (37.36±10.19) years old;the time from injury to operation ranged from 1 to 8 days with an average of (4.21±2.01) days. The changes of shoulder joint flexion, abduction, lateral lateral rotation, Constant-Murley shoulder function score and Rowe scores were compared between two groups before operation and 1 year after operation. The percentage of bone mass in pelvis area before operation and the percentage of bone defect in pelvis area at the latest follow-up were compared between two groups.
RESULTS:
All patients were followed up for 12 to 15 months with an average of (13.08±1.17) months in single-row anchor group and 12 to 15 months with an average of (13.29±1.07) months in double-row anchor group, with no statistical significance between two groups (P>0.05). The results of anterior flexion, abduction and lateral lateral rotation in single-row anchor group were(86.67±6.62) °, (79.50±5.68) °, (38.17±1.70) ° before operation, and (162.50±4.52)°, (169.17±3.35)°, (50.67±10.20)° at 1 year after operation; while in double-row anchor group were (84.14±5.48) °, (81.71±5.20) °, (39.29±3.63) ° before operation and (162.29 ± 5.53) °, (167.14±3.61) °, (56.93±9.56) ° at 1 year after operation;the difference between two groups before operation and 1 year after operation was statistically significant (P<0.05). There were no significant difference between two groups (P>0.05). Constant-Murley scores and Rowe scores in single-row anchor group were (55.42±3.75), (43.75±18.49) before operation and (94.83±2.21), (95.42±4.50) at 1 year after operation, respectively;while in double-row anchor group were (54.50±7.88), (41.79±18.25) before operation and (94.36±4.73), (95.00±4.80) at 1 year after operation;there was no significant difference in Constant-Murley score and Rowe score between two groups before operation and 1 year after operation (P>0.05). There was significant difference in the percentage of bone mass in pelvis area between two groups before operation (P>0.05). There was no significant difference in the percentage of bone defect in the shoulder area between single-row anchor group(4.42±1.51)% and double-row anchor group (2.71±1.44)% at 1 year after operation (P<0.05).
CONCLUSION
Both single and double row fixation techniques for the treatment of Ideberg typeⅠA scapular glenoid fracture could receive satisfactory functional recovery. However, double-row fixation has more advantages in reducing bone resorption of fracture mass.
Humans
;
Female
;
Male
;
Middle Aged
;
Arthroscopy/methods*
;
Adult
;
Scapula/surgery*
;
Case-Control Studies
;
Fractures, Bone/physiopathology*
;
Fracture Fixation, Internal/methods*
;
Shoulder Joint/physiopathology*
;
Range of Motion, Articular
9.A novel C-3-substituted oleanolic acid benzyl amide derivative exhibits therapeutic potential against influenza A by targeting PA-PB1 interactions and modulating host macrophage inflammation.
Kunyu LU ; Jianfu HE ; Chongjun HONG ; Haowei LI ; Jiaai RUAN ; Jinshen WANG ; Haoxing YUAN ; Binhao RONG ; Chan YANG ; Gaopeng SONG ; Shuwen LIU
Acta Pharmaceutica Sinica B 2025;15(8):4156-4173
The influenza A virus (IAV), renowned for its high contagiousness and potential to catalyze global pandemics, poses significant challenges due to the emergence of drug-resistant strains. Given the critical role of RNA polymerase in IAV replication, it stands out as a promising target for anti-IAV therapies. In this study, we identified a novel C-3-substituted oleanolic acid benzyl amide derivative, A5, as a potent inhibitor of the PAC-PB1N polymerase subunit interaction, with an IC50 value of 0.96 ± 0.21 μmol/L. A5 specifically targets the highly conserved PAC domain and demonstrates remarkable efficacy against both laboratory-adapted and clinically isolated IAV strains, including multidrug-resistant strains, with EC50 values ranging from 0.60 to 1.83 μmol/L. Notably, when combined with oseltamivir, A5 exhibits synergistic effects both in vitro and in vivo. In a murine model, dose-dependent administration of A5 leads to a significant reduction in IAV titers, resulting in a high survival rate among treated mice. Additionally, A5 treatment inhibits virus-induced Toll-like receptor 4 activation, attenuates cytokine responses, and protects against IAV-induced inflammatory responses in macrophages. In summary, A5 emerges as a novel inhibitor with high efficiency and broad-spectrum anti-influenza activity.
10.Gastrodin inhibits ferroptosis to alleviate hypoxic-ischemic brain damage in neonatal mice by activating GPX4/SLC7A11/FTH1 signaling.
Tao GUO ; Bolin CHEN ; Jinsha SHI ; Xianfeng KUANG ; Tengyue YU ; Song WEI ; Xiong LIU ; Rong XIAO ; Juanjuan LI
Journal of Southern Medical University 2025;45(10):2071-2081
OBJECTIVES:
To evaluate the therapeutic effect of gastrodin against hypoxic-ischemic brain damage (HIBD) in neonatal mice and explore the role of GPX4/SLC7A11/FTH1 signaling in mediating its effect.
METHODS:
Twenty-four 9- to 11-day-old C57BL/6J mice were randomized equally into 4 groups for sham operation, HIBD modeling by right common carotid artery ligation and subsequent exposure to hypoxia for 1 h, or gastrodin treatment at 100 or 200 mg/kg before and at 1 and 2 days after modeling. The mice then underwent neurological assessment (Zea-Longa scores), and the cerebral cortical penumbra tissue were collected for HE and Nissl staining, detection of ferroptosis biomarkers and protein expressions of GPX4, SLC7A11, and FTH1 with Western blotting and immunofluorescence co-localization, and observation of mitochondrial ultrastructure with electron microscopy. In cultured HT22 neuronal cells with oxygen-glucose deprivation (OGD) for 2 h, the effects of pretreatments with 0.5 mmol/L gastrodin, 10 μmol/L RSL3 (a GPX4 inhibitor), alone or in combination, were analyzed on expressions of ferroptosis-related proteins, cellular Fe²⁺, ROS, lipid peroxidation, MDA, and GSH levels, mitochondrial membrane potential (JC-1), and cell viability.
RESULTS:
Gastrodin treatment at the two doses both significantly ameliorated HIBD and neurological deficits of the mice, reduced mitochondrial damage and Fe²⁺, MDA and ROS levels, increased GSH level, and upregulated GPX4, SLC7A11, and FTH1 protein expressions. In HT22 cells, gastrodin pretreatment obviously attenuated OGD-induced ferroptosis and improved cell viability and mitochondrial function. Co-treatment with RSL3 potently abrogated the inhibitory effects of gastrodin on Fe²⁺, ROS, BODIPY-C11, and MDA levels and attenuated its protective effects on GSH level, cell viability, and mitochondrial membrane potential.
CONCLUSIONS
Gastrodin provides neuroprotective effects in neonatal mice with HIBD by suppressing neuronal ferroptosis via upregulating the GPX4/SLC7A11/FTH1 signaling pathway.
Animals
;
Ferroptosis/drug effects*
;
Hypoxia-Ischemia, Brain/drug therapy*
;
Mice
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Glucosides/pharmacology*
;
Animals, Newborn
;
Benzyl Alcohols/pharmacology*
;
Amino Acid Transport System y+/metabolism*

Result Analysis
Print
Save
E-mail