1.Analysis of Mechanism of Xingpi Capsules in Treatment of Functional Dyspepsia Based on Transcriptomics
Rongxin ZHU ; Mingyue HUANG ; Keyan WANG ; Xiangning LIU ; Yinglan LYU ; Gang WANG ; Fangfang RUI ; Qiong DENG ; Jianteng DONG ; Yong WANG ; Chun LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):164-172
ObjectiveTo investigate the ameliorative effect of Xingpi capsules on functional dyspepsia(FD) and the potential mechanism. MethodsSixty SPF-grade male SD neonatal rats(7 days old) were randomly divided into the normal group(n=12) and the modeling group(n=48), and the FD model was prepared by iodoacetamide gavage in the modeling group. After the model was successfully prepared, the rats in the modeling group were randomly divided into the model group, the low-dose and high-dose groups of Xingpi capsules(0.135, 0.54 g·kg-1) and the domperidone group(3 mg·kg-1), with 12 rats in each group. Rats in the normal and model groups were gavaged with distilled water, and rats in the rest of the groups were gavaged with the corresponding medicinal solution, once a day for 7 d. The general survival condition of the rats was observed, and the water intake and food intake of the rats were measured, the gastric emptying rate and the small intestinal propulsion rate were measured at the end of the treatment, the pathological damage of the rat duodenum was examined by hematoxylin-eosin(HE) staining, and the expressions of colonic tight junction protein(Occludin) and zonula occludens protein-1(ZO-1) were detected by immunofluorescence. The differentially expressed genes in the duodenal tissues of the model group and the normal group, and the high-dose group of Xingpi capsules and the model group were detected by transcriptome sequencing after the final administration, and Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out. The transcriptomic results were validated by Western blot, immunofluorescence, and real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the active ingredients of Xingpi capsules were screened for molecular docking with the key targets. ResultsCompared with the normal group, the general survival condition of rats in the model group was poorer, and the water intake, food intake, gastric emptying rate and small intestinal propulsion rate were all significantly reduced(P<0.05), inflammatory infiltration was seen in duodenal pathology, and the fluorescence intensities of Occludin and ZO-1 in the colon were significantly reduced(P<0.01). Compared with the model group, the general survival condition of rats in the high-dose group of Xingpi capsules improved significantly, and the water intake, food intake, gastric emptying rate and small intestinal propulsion rate were all significantly increased(P<0.05), the duodenal pathology showed a decrease in inflammatory infiltration, and the fluorescence intensities of colonic Occludin and ZO-1 were significantly increased(P<0.01). Transcriptomic results showed that Xingpi capsules might exert therapeutic effects by regulating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) through the key genes such as Slc5a1, Abhd6. The validation results showed that compared with the normal group, the phosphorylation levels of PI3K and Akt proteins, the protein expression level of interleukin(IL)-1β, and the fluorescence intensities of IL-6 and IL-1β were significantly increased in the model group(P<0.05, P<0.01), and the mRNA levels of Slc5a1, Abhd6, Mgam, Atp1a1, Slc7a8, Cdr2, Chrm3, Slc5a9 and other key genes were significantly increased(P<0.01). Compared with the model group, the phosphorylation levels of PI3K and Akt, the protein expression level of IL-1β and the fluorescence intensities of IL-6 and IL-1β in the high-dose group of Xingpi capsules were significantly reduced(P<0.05, P<0.01), and the mRNA levels of Slc5a1, Abhd6, Mgam, Atp1a1, Slc7a8, Cdr2, Chrm3 and Slc5a9 were significantly reduced(P<0.05). Weighted gene co-expression network analysis and molecular docking results showed that E-nerolidol and Z-nerolidol in Xingpi capsules were well bound to ABDH6 protein, and linarionoside A, valerosidatum and senkirkine were well bound to Slc5a1 protein. ConclusionXingpi capsules can effectively improve the general survival and gastrointestinal motility of FD rats, its specific mechanism may be related to the inhibition of PI3K/Akt signaling pathway to alleviate the low-grade inflammation of duodenum, and E-nerolidol, Z-nerolidol, linarionoside A, valerosidatum and senkirkine may be its key active ingredients.
2.Analysis of Mechanism of Xingpi Capsules in Treatment of Functional Dyspepsia Based on Transcriptomics
Rongxin ZHU ; Mingyue HUANG ; Keyan WANG ; Xiangning LIU ; Yinglan LYU ; Gang WANG ; Fangfang RUI ; Qiong DENG ; Jianteng DONG ; Yong WANG ; Chun LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):164-172
ObjectiveTo investigate the ameliorative effect of Xingpi capsules on functional dyspepsia(FD) and the potential mechanism. MethodsSixty SPF-grade male SD neonatal rats(7 days old) were randomly divided into the normal group(n=12) and the modeling group(n=48), and the FD model was prepared by iodoacetamide gavage in the modeling group. After the model was successfully prepared, the rats in the modeling group were randomly divided into the model group, the low-dose and high-dose groups of Xingpi capsules(0.135, 0.54 g·kg-1) and the domperidone group(3 mg·kg-1), with 12 rats in each group. Rats in the normal and model groups were gavaged with distilled water, and rats in the rest of the groups were gavaged with the corresponding medicinal solution, once a day for 7 d. The general survival condition of the rats was observed, and the water intake and food intake of the rats were measured, the gastric emptying rate and the small intestinal propulsion rate were measured at the end of the treatment, the pathological damage of the rat duodenum was examined by hematoxylin-eosin(HE) staining, and the expressions of colonic tight junction protein(Occludin) and zonula occludens protein-1(ZO-1) were detected by immunofluorescence. The differentially expressed genes in the duodenal tissues of the model group and the normal group, and the high-dose group of Xingpi capsules and the model group were detected by transcriptome sequencing after the final administration, and Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out. The transcriptomic results were validated by Western blot, immunofluorescence, and real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the active ingredients of Xingpi capsules were screened for molecular docking with the key targets. ResultsCompared with the normal group, the general survival condition of rats in the model group was poorer, and the water intake, food intake, gastric emptying rate and small intestinal propulsion rate were all significantly reduced(P<0.05), inflammatory infiltration was seen in duodenal pathology, and the fluorescence intensities of Occludin and ZO-1 in the colon were significantly reduced(P<0.01). Compared with the model group, the general survival condition of rats in the high-dose group of Xingpi capsules improved significantly, and the water intake, food intake, gastric emptying rate and small intestinal propulsion rate were all significantly increased(P<0.05), the duodenal pathology showed a decrease in inflammatory infiltration, and the fluorescence intensities of colonic Occludin and ZO-1 were significantly increased(P<0.01). Transcriptomic results showed that Xingpi capsules might exert therapeutic effects by regulating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) through the key genes such as Slc5a1, Abhd6. The validation results showed that compared with the normal group, the phosphorylation levels of PI3K and Akt proteins, the protein expression level of interleukin(IL)-1β, and the fluorescence intensities of IL-6 and IL-1β were significantly increased in the model group(P<0.05, P<0.01), and the mRNA levels of Slc5a1, Abhd6, Mgam, Atp1a1, Slc7a8, Cdr2, Chrm3, Slc5a9 and other key genes were significantly increased(P<0.01). Compared with the model group, the phosphorylation levels of PI3K and Akt, the protein expression level of IL-1β and the fluorescence intensities of IL-6 and IL-1β in the high-dose group of Xingpi capsules were significantly reduced(P<0.05, P<0.01), and the mRNA levels of Slc5a1, Abhd6, Mgam, Atp1a1, Slc7a8, Cdr2, Chrm3 and Slc5a9 were significantly reduced(P<0.05). Weighted gene co-expression network analysis and molecular docking results showed that E-nerolidol and Z-nerolidol in Xingpi capsules were well bound to ABDH6 protein, and linarionoside A, valerosidatum and senkirkine were well bound to Slc5a1 protein. ConclusionXingpi capsules can effectively improve the general survival and gastrointestinal motility of FD rats, its specific mechanism may be related to the inhibition of PI3K/Akt signaling pathway to alleviate the low-grade inflammation of duodenum, and E-nerolidol, Z-nerolidol, linarionoside A, valerosidatum and senkirkine may be its key active ingredients.
3.Differential expression of plasma extracellular vesicle miRNAs as biomarkers for distinguishing psoriatic arthritis from psoriasis.
Kexiang YAN ; Jie ZHU ; Mengmeng ZHANG ; Fuxin ZHANG ; Bing WANG ; Ling HAN ; Qiong HUANG ; Yulong TANG ; Yuan LI ; Nikhil YAWALKAR ; Zhenghua ZHANG ; Zhenmin NIU
Chinese Medical Journal 2025;138(2):219-221
4.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal
5.Targeting ceramide-induced microglial pyroptosis: Icariin is a promising therapy for Alzheimer's disease.
Hongli LI ; Qiao XIAO ; Lemei ZHU ; Jin KANG ; Qiong ZHAN ; Weijun PENG
Journal of Pharmaceutical Analysis 2025;15(4):101106-101106
Alzheimer's disease (AD), a progressive dementia, is one of the most common neurodegenerative diseases. Clinical trial results of amyloid-β (Aβ) and tau regulators based on the pretext of straightforward amyloid and tau immunotherapy were disappointing. There are currently no effective strategies for slowing the progression of AD. Herein, we spotlight the dysregulation of lipid metabolism, particularly the elevation of ceramides (Cers), as a critical yet underexplored facet of AD pathogenesis. Our study delineates the role of Cers in promoting microglial pyroptosis, a form of programmed cell death distinct from apoptosis and necroptosis, characterized by cellular swelling, and membrane rupture mediated by the NLRP3 inflammasome pathway. Utilizing both in vivo experiments with amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice and in vitro assays with BV-2 microglial cells, we investigate the activation of microglial pyroptosis by Cers and its inhibition by icariin (ICA), a flavonoid with known antioxidant and anti-inflammatory properties. Our findings reveal a significant increase in Cers levels and pyroptosis markers (NOD-like receptor family, pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, gasdermin D (gasdermin D (GSDMD)), and interleukin-18 (IL-18)) in the brains of AD model mice, indicating a direct involvement of Cers in AD pathology through the induction of microglial pyroptosis. Conversely, ICA treatment effectively reduces these pyroptotic markers and Cer levels, thereby attenuating microglial pyroptosis and suggesting a novel therapeutic mechanism of action against AD. This study not only advances our understanding of the pathogenic role of Cers in AD but also introduces ICA as a promising candidate for AD therapy, capable of mitigating neuroinflammation and pyroptosis through the cyclooxygenase-2 (COX-2)-NLRP3 inflammasome-gasdermin D (GSDMD) axis. Our results pave the way for further exploration of Cer metabolism disorders in neurodegenerative diseases and highlight the therapeutic potential of targeting microglial pyroptosis in AD.
6.Association of Body Mass Index with All-Cause Mortality and Cause-Specific Mortality in Rural China: 10-Year Follow-up of a Population-Based Multicenter Prospective Study.
Juan Juan HUANG ; Yuan Zhi DI ; Ling Yu SHEN ; Jian Guo LIANG ; Jiang DU ; Xue Fang CAO ; Wei Tao DUAN ; Ai Wei HE ; Jun LIANG ; Li Mei ZHU ; Zi Sen LIU ; Fang LIU ; Shu Min YANG ; Zu Hui XU ; Cheng CHEN ; Bin ZHANG ; Jiao Xia YAN ; Yan Chun LIANG ; Rong LIU ; Tao ZHU ; Hong Zhi LI ; Fei SHEN ; Bo Xuan FENG ; Yi Jun HE ; Zi Han LI ; Ya Qi ZHAO ; Tong Lei GUO ; Li Qiong BAI ; Wei LU ; Qi JIN ; Lei GAO ; He Nan XIN
Biomedical and Environmental Sciences 2025;38(10):1179-1193
OBJECTIVE:
This study aimed to explore the association between body mass index (BMI) and mortality based on the 10-year population-based multicenter prospective study.
METHODS:
A general population-based multicenter prospective study was conducted at four sites in rural China between 2013 and 2023. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to assess the association between BMI and mortality. Stratified analyses were performed based on the individual characteristics of the participants.
RESULTS:
Overall, 19,107 participants with a sum of 163,095 person-years were included and 1,910 participants died. The underweight (< 18.5 kg/m 2) presented an increase in all-cause mortality (adjusted hazards ratio [ aHR] = 2.00, 95% confidence interval [ CI]: 1.66-2.41), while overweight (≥ 24.0 to < 28.0 kg/m 2) and obesity (≥ 28.0 kg/m 2) presented a decrease with an aHR of 0.61 (95% CI: 0.52-0.73) and 0.51 (95% CI: 0.37-0.70), respectively. Overweight ( aHR = 0.76, 95% CI: 0.67-0.86) and mild obesity ( aHR = 0.72, 95% CI: 0.59-0.87) had a positive impact on mortality in people older than 60 years. All-cause mortality decreased rapidly until reaching a BMI of 25.7 kg/m 2 ( aHR = 0.95, 95% CI: 0.92-0.98) and increased slightly above that value, indicating a U-shaped association. The beneficial impact of being overweight on mortality was robust in most subgroups and sensitivity analyses.
CONCLUSION
This study provides additional evidence that overweight and mild obesity may be inversely related to the risk of death in individuals older than 60 years. Therefore, it is essential to consider age differences when formulating health and weight management strategies.
Humans
;
Body Mass Index
;
China/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Rural Population/statistics & numerical data*
;
Aged
;
Follow-Up Studies
;
Adult
;
Mortality
;
Cause of Death
;
Obesity/mortality*
;
Overweight/mortality*
7.Research progress on the pathogenic mechanisms and treatment strategies of heat stroke
Haixin MA ; Yanli ZHU ; Jiayan LI ; Qiong LIU ; Yang YANG
Chinese Critical Care Medicine 2024;36(5):546-551
Heat stroke (HS), also known as severe sunstroke, is one of the most serious heat-related disorders, characterized by rapid onset, rapid progression, aggressive condition, and high morbidity and mortality. The occurrence and development of HS are closely related to pathophysiological processes such as inflammation, oxidative stress, cell death, and coagulation failure. With the gradual discovery of the pathogenic mechanisms of HS, some drugs or therapeutic approaches targeting its molecular regulatory pathways have shown clinical promise. This review intends to provide an overview of research advances in HS types, pathogenic mechanisms, preclinical and clinically relevant therapeutic strategies, as well as to highlight the potential clinical applications of HS-related biomarkers and therapeutic targets with a view to informing the clinical management of HS.
8.Risk factors analysis and early prediction model construction for necrosis in interstitial oedematous pancreatitis
Bo CAO ; Jianguo ZHU ; Wenwen GUO ; Fan YANG ; Sheng SU ; Zhiyue WANG ; Haodong GUO ; Qiong WANG ; Haige LI
Journal of Practical Radiology 2024;40(11):1818-1822
Objective To investigate the risk factors associated with necrosis in interstitial oedematous pancreatitis(IOP)and to develop a nomogram model for the early prediction of necrosis in IOP.Methods A retrospective analysis was conducted on 306 patients diagnosed with IOP.Patients were stratified into necrosis and edema groups based on the presence or absence of pancreatic necrosis through follow-up CT-enhanced examinations.Logistic regression analysis was employed to identify independent predictive factors for necrosis in IOP.Subsequently,a nomogram model was developed,and its discriminative ability,accuracy,and practicality were assessed through receiver operating characteristic(ROC)curve,calibration curve,and decision curve analysis(DCA).Results Balthazar computed tomography severity index(CTSI),gender,lactate dehydrogenase(LDH),and triglyceride(TG)were finally identified as four independent predictors for constructing the nomogram model.The area under the curve(AUC)of the nomogram model was 0.800[95%confidence interval(CI)0.731-0.869].The calibration curve indicated good consistency between the predicted probabil-ity and the actual probability of necrosis in IOP(P=0.737).DCA suggested high practicality of the nomogram model within the threshold probability range of 3%to 66%and 75%to 96%.Conclusion The nomogram model based on Balthazar CTSI,gender,LDH,and TG demonstrates good efficacy in early prediction of necrosis in IOP.
9.Oral Absorption and Labeling Techniques of Traditional Chinese Medicine Polysaccharides: A Review
Weifeng ZHU ; Shuangyan DENG ; Hui OUYANG ; Wenjing YANG ; Jianing FU ; Huangqing WEI ; Qiong LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(12):261-269
Polysaccharides are the important material basis of traditional Chinese medicine(TCM), and have various pharmacological activities such as immunomodulation, antitumor and anti-aging. Due to the large molecular weight of TCM polysaccharides, their structural analysis and oral absorption mechanism are facing technical challenges, and the current research on their structure-activity relationships has made some breakthroughs, while the research on their oral absorption mechanisms is relatively slow. In-depth study of the oral absorption mechanism of TCM polysaccharides is not only crucial for the interpretation of their action pathways and efficacy in vivo, but also helpful for the interpretation of their pharmacological effects, rational clinical applications and the discovery of new targets. In recent years, the application of fluorescent labeling and isotopic labeling methods has provided new technical means for the oral absorption studies of polysaccharides, which has promoted the development of oral absorption studies of TCM polysaccharides. In this paper, we reviewed the oral absorption pathways and labeling techniques of TCM polysaccharides, and concluded that they can be absorbed orally through transmembrane, cellular bypass, and M-cell-mediated transport, of which transmembrane pathway is the main absorption pathway, and summarized the labeling reactions of four fluorescent labeling and isotopic labeling methods with TCM polysaccharides, which can provide references for evaluating the absorption pathways of TCM polysaccharides, screening active TCM polysaccharides, establishing pharmacodynamic models and comprehensively elucidating the mechanism of TCM polysaccharides.
10.Effects of template and pore-forming agent method on the structure and drug delivery of porous maltodextrin
Zhe LI ; Xiao-sui LUO ; Wei-feng ZHU ; Qiong LI ; Yong-mei GUAN ; Zheng-ji JIN ; Li-hua CHEN ; Liang-shan MING
Acta Pharmaceutica Sinica 2024;59(8):2381-2395
This study using maltodextrin as raw material, 1%-5% polyvinylpyrrolidone K30 as template agent, 1%-5% ammonium bicarbonate as pore-forming agent, curcumin and ibuprofen as model drugs. Porous maltodextrin was prepared by template and pore-forming agent methods, respectively. The structure and drug delivery behavior of porous maltodextrin prepared by different technologies were comprehensively characterized. The results showed that the porous maltodextrin prepared by pore-forming agent method had larger specific surface area (6.449 4 m2·g-1) and pore size (32.804 2 nm), which was significantly better than that by template agent method (3.670 2 m2·g-1, 15.278 5 nm). The adsorption kinetics between porous maltodextrin prepared by pore-forming agent method and curcumin were suitable for quasi-first order adsorption kinetic model, and that between porous maltodextrin and ibuprofen were suitable for quasi-second order adsorption kinetic model. While the adsorption kinetics between porous maltodextrin prepared by template agent method and two model drugs were both suitable for the quasi-first order adsorption kinetic model. In addition, the dissolution behavior analysis showed that the porous maltodextrin prepared by the two technologies can significantly improve the dissolution behavior of insoluble drugs, and the drug release was both carried out by diffusion mechanism, which suitable for the Peppas kinetic release model, but the porous maltodextrin prepared by template agent method had a faster release rate. The change of nozzle diameter had no significant effect on the adsorption process and drug release behavior of porous maltodextrin. In conclusion, the porous maltodextrins prepared by two different technologies were both beneficial to the delivery of insoluble drugs, and the template agent method was the best for delivery of insoluble drugs. This study can provide theoretical basis for the preparation of porous particles, promote the application of porous particles in insoluble drugs, and improve the bioavailability of insoluble drugs.

Result Analysis
Print
Save
E-mail