1.Panax notoginseng saponins regulate differential miRNA expression in osteoclast exosomes and inhibit ferroptosis in osteoblasts
Hongcheng TAO ; Ping ZENG ; Jinfu LIU ; Zhao TIAN ; Qiang DING ; Chaohui LI ; Jianjie WEI ; Hao LI
Chinese Journal of Tissue Engineering Research 2025;29(19):4011-4021
BACKGROUND:Steroid-induced femoral head necrosis is mostly caused by long-term and extensive use of hormones,but its specific pathogenesis is not yet clear and needs further study. OBJECTIVE:To screen out the differential miRNAs in osteoclast exosomes after the intervention of Panax notoginseng saponins,and on this basis,to further construct an osteogenic-related ferroptosis regulatory network to explore the potential mechanism and research direction of steroid-induced osteonecrosis of the femoral head. METHODS:MTT assay was used to detect the toxic effects of different concentrations of dexamethasone and different mass concentrations of Panax notoginseng saponins on Raw264.7 cell line.Tartrate resistant acid phosphatase staining and TUNEL assay were used to detect the effects of Panax notoginseng saponins on osteoclast inhibition and apoptosis.Exosomes were extracted from cultured osteoclasts with Panax notoginseng saponins intervention.Exosomes from different groups were sequenced to identify differentially expressed miRNAs.CytoScape 3.9.1 was used to construct and visualize the regulatory network between differentially expressed miRNAs and mRNAs.Candidate mRNAs were screened by GO analysis and KEGG analysis.Finally,the differential genes related to ferroptosis were screened out,and the regulatory network of ferroptosis-related genes was constructed. RESULTS AND CONCLUSION:(1)The concentration of dexamethasone(0.1 μmol/L)and Panax notoginseng saponins(1 736.85 μg/mL)suitable for intervention of Raw264.7 cells was determined by MTT assay.(2)Panax notoginseng saponins had an inhibitory effect on osteoclasts and could promote their apoptosis.(3)Totally 20 differentially expressed miRNAs were identified from osteoclast-derived exosome samples,and 11 differentially expressed miRNAs related to osteogenesis were predicted by target mRNAs.The regulatory networks of 4 up-regulated differentially expressed miRNAs corresponding to 155 down-regulated candidate mRNAs and 7 down-regulated differentially expressed miRNAs corresponding to 238 up-regulated candidate mRNAs were constructed.(4)Twenty-four genes related to ferroptosis were screened out from the differential genes.Finally,12 networks were constructed(miR-98-5p/PTGS2,miR-23b-3p/PTGS2,miR-425-5p/TFRC,miR-133a-3p/TFRC,miR-185-5p/TFRC,miR-23b-3p/NFE2L2,miR-23b-3p/LAMP2,miR-98-5p/LAMP2,miR-182-5p/LAMP2,miR-182-5p/TLR4,miR-23b-3p/ZFP36,and miR-182-5p/ZFP36).These results indicate that Panax notoginseng saponins may regulate osteoblast ferroptosis by regulating the expression of miRNAs derived from osteoclast exosomes,thus providing a new idea for the study of the mechanism of steroid-induced femoral head necrosis.
4.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
5.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
7.Effect of recombinant glycoprotein hormone beta5/alpha2 on promoting lipolysis via regulation of cAMP/PKA/CREB pathway in 3T3-L1 adipocytes and its mechanism
Ai-Jun QIAN ; Geng-Miao XIAO ; Zhuang LI ; Xue TIAN ; Xiao-Hong LIU ; Yu-Ping SONG ; Zheng-Gang ZHAO ; Zi-Jian ZHAO ; Fang-Hong LI
Chinese Pharmacological Bulletin 2024;40(7):1272-1278
Aim To investigate the effect of recombi-nant glycoprotein hormone β5/α2(rCGH)on lipolysis in 3T3-L1 adipocytes,and explore the underlying mechanism.Methods 3T3-L1 preadipocytes were cultured and induced to differentiate into mature adipo-cytes,then treated with different concentrations of rCGH for 24 h in vitro.Cell viability of 3T3-L1 adipo-cytes was evaluated by CCK-8 assay,the levels of in-tracellular triglyceride(TG)and glycerol in the culture supernatant were measured by enzymatic method,and the changes of lipid droplets were observed by oil red O staining.The expression levels of HSL and ATGL lipo-lytic proteins in adipocytes were detected by Western blot.To carry out the intervention experiment with dif-ferent concentrations of rCGH with or without the PKA inhibitor,H89,on the mature 3T3-L1 adipocytes,the cultured cells were divided into the control group,H89 pre treatment group,1 μmol·L-1 rCGH group,and(1 μmol·L-1 rCGH+H89)combined intervention group.The contents of intracellular TG and free glycer-ol were measured by enzymatic method,and the ex-pression of CREB and lipolysis-related proteins was de-tected using Western blot.Results Different concen-trations of rCGH(0.25,0.5,1,and 2 μmol·L-1)had no significant effect on the cell viability of adipo-cytes(P>0.05).Compared with the control group,the treatment with rCGH significantly decreased the size of lipid droplets and intracellular TG content,while significantly elevated glycerol concentration in cell supernatant.rCGH treatment also stimulated the protein expression of p-HSL,ATGL,and p-PKA.In addition,the addition of a PKA inhibitor,H89,atten-uated the effects of rCGH on free glycerol level,intra-cellular TG content,and the expression of p-HSL,p-PLIN1,and p-CREB.Conclusions rCGH enhances the lipolysis of 3T3-L1 adipocytes by up-regulating the activities of HSL,ATGL and PKA,promoting glycerol release,inhibiting TG synthesis and lipid accumula-tion,and its mechanism of action is related to the acti-vation of cAMP/PKA/CREB signaling pathway.
8.Research status and reflection of the mechanism of TCM manipulation in the treatment of cervical spondylosis under the background of multi-disciplinary intersection
Li-Guo ZHU ; Tian-Xiao FENG ; Xu WANG ; Ping WANG ; Xu WEI
China Journal of Orthopaedics and Traumatology 2024;37(7):734-742
The study of TCM manipulation's mechanism is the key scientific issue in the current manipulation research.It is the key and difficult point on the road of modernization and internationalization of Chinese orthopedics and traumatology.Meanwhile,it is also an important way to clarify systematically the scientific connotation of TCM manipulation.At present,our country is in an important period when multi-disciplinary intersection lead knowledge production,scientific innovation,and discipline development.The trend of cross-innovation between Chinese orthopedics and traumatology and other disciplines provides the carrier and method for the study of TCM manipulation's mechanism.Cervical spondylosis is the traditional domi-nant disease of Chinese orthopedics and traumatology.In recent years,many scholars have applied multi-disciplinary tech-niques and theories to explore the mechanism of TCM manipulation by focusing on the four dimensions of muscle,bone,blood vessel and nerve.The article takes the treatment of cervical spondylosis by TCM manipulation as the research entry point,and integrates the application status and implementation strategies of various techniques and theories under the background of mul-ti-disciplinary intersection,which is conducive to the better combination,innovation and transformation of Chinese orthopedics and traumatology with other disciplines,and provides ideas and references for systematically clarifying the scientific connota-tion of TCM manipulation.
9.Effect of swimming exercise on lipid metabolism in NAFLD mice based on lipidomics
Yan LUO ; Ping DENG ; Meng-Yan CHEN ; Jia XIE ; Li TIAN ; Hui-Feng PI
Journal of Regional Anatomy and Operative Surgery 2024;33(12):1027-1033
Objective To investigate the regulatory effect of swimming exercise(SE)on lipid metabolism in nonalcoholic fatty liver disease(NAFLD)mice.Methods A total of 27 C57BL/6J mice were divided into the control group(normal diet),high fat diet(HFD)group and HFD+SE group,with 9 mice in each group.Twelve weeks later,liver tissues were collected for untargeted lipidomics detection by LC-MS.Dimensional statistical analysis of lipidomics profiles was carried out by constructing OPLS-DA model,and combined with the t-test,the lipids with OPLS-DA VIP>1,P<0.05 were screened out from all samples as significantly different lipids.Results There were 81 different lipids between HFD group and the control group;and there were 27 different lipids between HFD+SE group and HFD group.The different lipids mainly belong to glycerides,glycerophospholipids and sphingomyelins.Conclusion Lipid metabolism profile of NAFLD mice has been changed,and swimming exercise can improve lipid metabolism of NAFLD mice.
10.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.

Result Analysis
Print
Save
E-mail