1.The two-year follow up study on the association between new caries risk in school aged children and multi dimensional sleep indicators
LU Xiuzhen, HUANG Chuanlong, LI Yang, ZUO Min, SUN Ying, CHEN Xin
Chinese Journal of School Health 2025;46(4):579-583
Objective:
To explore the prospective association between multidimensional sleep indicators and the risk of newlyonset dental caries, providing a reference for childrens oral healthrelated sleep intervention.
Methods:
In October 2021, 1 417 students in grades 1 to 4 (aged 6 to 11) from two elementary schools in Bengbu, Anhui Province, were selected by cluster sampling method. Surveys and followup visits were conducted at baseline (T1), November 2022 (T2), May 2023 (T3), and November 2023 (T4), respectively, including parental questionnaires, oral health and physical examination. Bedtime, sleep duration, sleep midpoint, social jet lag, weekend catchup sleep, and sleep habits were collected and calculated. A multifactorial Cox proportional risk regression model was used to analyze the association between multidimensional sleep indicators and newlyonset caries in schoolaged children after 2 years.
Results:
The prevalence of dental caries in children was 65.1% at baseline, and the prevalence was 59.0% at the end of the 2year followup. Cox proportional risk regression model showed that for every 1point increase in the childrens bedtime resistance, nocturnal awakenings, parasomnias, and daytime sleepiness scores, the risk of newlyonset caries increased by 12% (HR=1.12, 95%CI=1.08-1.15), 22% (HR=1.22, 95%CI=1.15-1.29), 12% (HR=1.12, 95%CI=1.08-1.17), and 15% (HR=1.15, 95%CI=1.12-1.19), respectively; the risk of newlyonset caries increased by 23% for each 1 h increase in the length of weekend catchup sleep (HR=1.23, 95%CI=1.14 -1.33); compared with children who went to bed before 21:00 on school days, those who went to bed later than 22:00 had a 57% higher risk of newlyonset caries (HR=1.57, 95%CI=1.22-2.03). Compared to children who slept adequately (≥9 h/d), those with insufficient sleep had a 67% higher risk of new caries (HR=1.67, 95%CI=1.43-1.95) (P<0.01).
Conclusions
These findings suggest a significant association between sleep patterns/sleep disorders and the development of childhood dental caries. Incorporating sleep behavior optimization and sleep quality improvement into comprehensive caries prevention and oral health management protocols may represent a promising intervention strategy to enhance childrens oral health outcomes.
2.Molecular Mechanism of Thymoquinone Inhibition on Malignant Proliferation of Acute Myeloid Leukemia Cells.
Jie LIN ; Fan-Lin ZENG ; Yan-Quan LIU ; Zhi-Min YAN ; Zuo-Tao LI ; Qing-Lin XU ; Hong-Quan ZHU
Journal of Experimental Hematology 2025;33(2):311-318
OBJECTIVE:
To investigate the effects of thymoquinone on the proliferation of acute myeloid leukemia (AML) cells and its molecular mechanism, so as to provide theoretical basis for the basic research on the anti-leukemia of traditional Chinese medicine.
METHODS:
The HL-60 and THP-1 cells were treated with thymoquinone at different concentration gradients, cell proliferation was detected by CCK-8 method, morphological changes were detected by Wright-Giemsa method, apoptosis was detected by Annexin V/PI double staining flow cytometry, and apoptosis and signal pathway protein expression were detected by Western blot. Real-time quantitative fluorescence PCR and Western blot were used to detect the expression changes of high mobility family members of SRY-related proteins (SOX).
RESULTS:
Thymoquinone inhibited the malignant proliferation of HL-60 and THP-1 cells, up-regulated the expression of pro-apoptotic protein Bax, down-regulated the expression of anti-apoptotic protein Bcl-2 and Survivin, and hydrolyzed Caspase-3 to induce the apoptosis of HL-60 and THP-1 cells. Thymoquinone could also significantly down-regulate the phosphorylation of PI3K, Akt and mTOR, and inhibit the malignant biological characteristics of HL-60 and THP-1 cells by inhibiting the activation of PI3K/Akt/mTOR pathway. After thymoquinone intervention in HL-60 and THP-1 cells, the expression of SOX2 and SOX4 could be down-regulated significantly. At low concentration ( < 10 μmol/L), the expression of SOX12 was weakly affected by thymoquinone. With increasing concentration, the expression of SOX12 could be down-regulated, however, thymoquinone had no effect on SOX11 expression.
CONCLUSION
Thymoquinone can inhibit the proliferation of AML cells, and its mechanism may be related to inhibiting the activation of PI3K/Akt/mTOR signaling pathway, regulating the expression of apoptotic proteins and core members of SOX family.
Humans
;
Benzoquinones/pharmacology*
;
Cell Proliferation/drug effects*
;
Leukemia, Myeloid, Acute/metabolism*
;
Apoptosis/drug effects*
;
HL-60 Cells
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Cell Line, Tumor
;
Phosphatidylinositol 3-Kinases/metabolism*
;
THP-1 Cells
3.The Molecular Mechanism of HCQ Reversing Immune Mediators Dysregulation in Severe Infection after Chemotherapy in Acute Myeloid Leukemia and Inducing Programmed Death of Leukemia Cells.
Qing-Lin XU ; Yan-Quan LIU ; He-Hui ZHANG ; Fen WANG ; Zuo-Tao LI ; Zhi-Min YAN ; Shu-Juan CHEN ; Hong-Quan ZHU
Journal of Experimental Hematology 2025;33(4):931-938
OBJECTIVE:
To explore the effects of hydroxychloroquine (HCQ) on immune mediators dysregulation in severe infection after chemotherapy in acute myeloid leukemia (AML) and its molecular mechanism.
METHODS:
Bone marrow or peripheral blood samples of 36 AML patients with severe infection (AML-SI) and 29 AML patients without infection (AML-NI) after chemotherapy were collected from the First Affiliated Hospital of Gannan Medical University from August 2022 to June 2023. In addition, the peripheral blood of 21 healthy subjects from the same period in our hospital was selected as the control group. The mRNA expressions of CXCL12, CXCR4 and CXCR7 were detected by RT-qPCR technology, and the levels of IL-6, IL-8 and TNF-α were detected by ELISA. Leukemia-derived THP-1 cells were selected and constructed as AML disease model. At the same time, bone marrow mesenchymal stem cells (BM-MSCs) from AML-SI patients were co-cultured with THP-1 cells and divided into Mono group and Co-culture group. THP-1 cells were treated with different concentration gradients of HCQ. The cell proliferation activity was subsequently detected by CCK-8 method and apoptosis was detected by Annexin V/PI double staining flow cytometry. ELISA was used to detect the changes of IL-6, IL-8 and TNF-α levels in the supernatant of the cell co-culture system, RT-qPCR was used to detect the mRNA expression changes of the core members of the CXCL12-CXCR4/7 regulatory axis, and Western blot was used to detect the expressions of apoptosis regulatory molecules and related signaling pathway proteins.
RESULTS:
CXCL12, CXCR4, CXCR7, as well as IL-6, IL-8, and TNF-α were all abnormally increased in AML patients, and the increases were more significant in AML-SI patients (P <0.01). Furthermore, there were statistically significant differences between AML-NI patients and AML-SI patients (all P <0.05). HCQ could inhibit the proliferation and induce the apoptosis of THP-1 cells, but the low concentration of HCQ had no significant effect on the killing of THP-1 cells. When THP-1 cells were co-cultured with BM-MSCs of AML patients, the levels of IL-6, IL-8 and TNF-α in the supernatance of Co-culture group were significantly higher than those of Mono group (all P <0.01). After HCQ intervention, the levels of IL-6, IL-8 and TNF-α in cell culture supernatant of Mono group were significantly decreased compared with those before intervention (all P <0.01). Similarly, those of Co-culture group were also significantly decreased (all P <0.001). However, the expression of the core members of the CXCL12-CXCR4/7 regulatory axis was weakly affected by HCQ. HCQ could up-regulate the expression of pro-apoptotic protein Bax, down-regulate the expression of anti-apoptotic protein Bcl-2, as well as simultaneously promote the hydrolytic activation of Caspase-3 when inhibiting the activation level of TLR4/NF-κB pathway, then induce the programmed death of THP-1 cells after intervention.
CONCLUSION
The core members of CXCL12-CXCR4/7 axis and related cytokines may be important mediators of severe infectious immune disorders in AML patients. HCQ can inhibit cytokine levels to reverse immune mediators dysregulation and suppress malignant biological characteristics of leukemia cells. The mechanisms may be related to regulating the expression of Bcl-2 family proteins, hydrolytically activating Caspase-3 and inhibiting the activation of TLR4/NF-κB signaling pathway.
Humans
;
Leukemia, Myeloid, Acute/immunology*
;
Hydroxychloroquine/pharmacology*
;
Receptors, CXCR4/metabolism*
;
Apoptosis/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Chemokine CXCL12/metabolism*
;
Interleukin-8/metabolism*
;
Interleukin-6/metabolism*
;
Receptors, CXCR/metabolism*
;
Mesenchymal Stem Cells
;
THP-1 Cells
4.Effects of continued use of targeted therapy on patients with pulmonary arterial hypertension and complicated by hemoptysis.
Zhong-Chao WANG ; Xiu-Min HAN ; Yao ZUO ; Na DONG ; Jian-Ming WANG ; Li-Li MENG ; Jia-Wang XIAO ; Ming ZHAO ; Yuan MI ; Qi-Guang WANG
Journal of Geriatric Cardiology 2025;22(3):404-410
5.USP51/GRP78/ABCB1 axis confers chemoresistance through decreasing doxorubicin accumulation in triple-negative breast cancer cells.
Yang OU ; Kun ZHANG ; Qiuying SHUAI ; Chenyang WANG ; Huayu HU ; Lixia CAO ; Chunchun QI ; Min GUO ; Zhaoxian LI ; Jie SHI ; Yuxin LIU ; Siyu ZUO ; Xiao CHEN ; Yanjing WANG ; Mengdan FENG ; Hang WANG ; Peiqing SUN ; Yi SHI ; Guang YANG ; Shuang YANG
Acta Pharmaceutica Sinica B 2025;15(5):2593-2611
Recent studies have indicated that the expression of ubiquitin-specific protease 51 (USP51), a novel deubiquitinating enzyme (DUB) that mediates protein degradation as part of the ubiquitin‒proteasome system (UPS), is associated with tumor progression and therapeutic resistance in multiple malignancies. However, the underlying mechanisms and signaling networks involved in USP51-mediated regulation of malignant phenotypes remain largely unknown. The present study provides evidence of USP51's functions as the prominent DUB in chemoresistant triple-negative breast cancer (TNBC) cells. At the molecular level, ectopic expression of USP51 stabilized the 78 kDa Glucose-Regulated Protein (GRP78) protein through deubiquitination, thereby increasing its expression and localization on the cell surface. Furthermore, the upregulation of cell surface GRP78 increased the activity of ATP binding cassette subfamily B member 1 (ABCB1), the main efflux pump of doxorubicin (DOX), ultimately decreasing its accumulation in TNBC cells and promoting the development of drug resistance both in vitro and in vivo. Clinically, we found significant correlations among USP51, GRP78, and ABCB1 expression in TNBC patients with chemoresistance. Elevated USP51, GRP78, and ABCB1 levels were also strongly associated with a poor patient prognosis. Importantly, we revealed an alternative intervention for specific pharmacological targeting of USP51 for TNBC cell chemosensitization. In conclusion, these findings collectively indicate that the USP51/GRP78/ABCB1 network is a key contributor to the malignant progression and chemotherapeutic resistance of TNBC cells, underscoring the pivotal role of USP51 as a novel therapeutic target for cancer management.
6.GPSM2 is highly expressed in gastric cancer to affect patient prognosis by promoting tumor cell proliferation.
Xue SONG ; Yue CHEN ; Min ZHANG ; Nuo ZHANG ; Lugen ZUO ; Jing LI ; Zhijun GENG ; Xiaofeng ZHANG ; Yueyue WANG ; Lian WANG ; Jianguo HU
Journal of Southern Medical University 2025;45(2):229-238
OBJECTIVES:
To explore the association between GPSM2 expression level and gastric cancer progression and analyze the functional pathways and action mechanism of GPSM2.
METHODS:
We analyzed GPSM2 expression levels in gastric cancer tumors based on data from the GEPIA database and the clinical data of 109 patients. Public databases enrichment analysis were used to assess the impact of GPSM2 expression level on survival outcomes and the functional pathways and action mechanism of GPSM2. We further observed the effects of GPSM2 knockdown and overexpression on proliferation, migration and apoptosis of MGC803 cells using CCK-8 assay, colony formation assay, flow cytometry and immunoblotting and on the growth of MGC803 cell xenografts in nude mice.
RESULTS:
Bioinformatic analysis and immunohistochemical staining of the clinical specimens both revealed high GPSM2 expressions in gastric cancer (P<0.01). A high GPSM2 expression was significantly correlated with T3-4 stages, N2-3 stages, a carcinoembryonic antigen (CEA) level ≥5 μg/L, and a carbohydrate antigen (CA) 19-9 level ≥37 kU/L (P<0.05). Cox regression analysis identified high GPSM2 expression as an independent risk factor affecting 5-year survival of the patients (P<0.05). Gene ontology (GO) analysis suggested that GPSM2 was involved in cell cycle regulation. In MGC803 cells, GPSM2 overexpression significantly promoted cell proliferation and G1/S transition and xenograft growth in nude mice. KEGG pathway enrichment analysis indicated that GPSM2 executed its biological functions by regulating the p53 signaling pathway, which was confirmed by the results of immunoblotting experiments showing suppression of p53 signaling pathway activity in GPSM2-over expressing MGC803 cells.
CONCLUSIONS
GPSM2 is highly expressed in gastric cancer to affect patient prognosis by promoting tumor cell proliferation and G1/S transition possibly via inhibiting the p53 pathway.
Stomach Neoplasms/metabolism*
;
Humans
;
Cell Proliferation
;
Prognosis
;
Animals
;
Mice, Nude
;
Cell Line, Tumor
;
Mice
;
Apoptosis
;
Tumor Suppressor Protein p53/metabolism*
;
Cell Movement
7.High expression of apolipoprotein C1 promotes proliferation and inhibits apoptosis of papillary thyroid carcinoma cells by activating the JAK2/STAT3 signaling pathway.
Yu BIN ; Ziwen LI ; Suwei ZUO ; Sinuo SUN ; Min LI ; Jiayin SONG ; Xu LIN ; Gang XUE ; Jingfang WU
Journal of Southern Medical University 2025;45(2):359-370
OBJECTIVES:
To investigate the expression of apolipoprotein C1 (APOC1) in papillary thyroid carcinoma (PTC) and its effects on proliferation and apoptosis of PTC cells.
METHODS:
The expression level of APOC1 in PTC and its impact on prognosis were analyzed using GEPIA 2 and Kaplan-Meier databases. Immunohistochemistry (IHC) and Western blotting were used to detect the expression of APOC1 in PTC and adjacent tissues and in 3 PTC cell lines and normal thyroid Nthyori 3-1 cells. In TPC-1 and BCPAP cells, the effect of Lipofectamine 2000-mediated transfection with APOC1 siRNA or an APOC1-overexpressing plasmid on cell growth and colony formation ability were examined by observing the growth curves and using colony-forming assay. The changes in cell cycle and apoptosis of the transfected cells were analyzed with flow cytometry. RT-qPCR and Western blotting were used to detect the changes in expressions of P21, P27, CDK4, cyclin D1, Bcl-2, Bax, caspase-3 and caspase-9 and the key proteins in the JAK2/STAT3 signaling pathway.
RESULTS:
APOC1 expression was significantly higher in PTC tissues and the 3 PTC cell lines than in the adjacent tissues and Nthyori 3-1 cells, respectively. In TPC-1 and BCPAP cells, APOC1 knockdown obviously reduced cell proliferative activity, increased the percentage of G0/G1 phase cells, lowered the percentages of S and G2 phase cells, promoted cell apoptosis, and downregulated mRNA and protein expression levels of CDK4, cyclin D1 and Bcl-2 and the protein levels of p-JAK2 and p-STAT3. APOC1 overexpression in the cells produced the opposite effects on cell proliferation, apoptosis, cell cycle and the mRNA and protein expressions. The application of AG490, a JAK2 inhibitor, strongly attenuated APOC1 overexpression-induced activation of the JAK2/STAT3 signaling pathway in BCPAP cells.
CONCLUSIONS
APOC1 overexpression promotes proliferation and inhibits apoptosis of PTC cells possibly by activating the JAK2/STAT3 signaling pathway and accelerating cell cycle progression.
Humans
;
Apoptosis
;
Cell Proliferation
;
STAT3 Transcription Factor/metabolism*
;
Signal Transduction
;
Janus Kinase 2/metabolism*
;
Thyroid Neoplasms/pathology*
;
Thyroid Cancer, Papillary
;
Cell Line, Tumor
;
Carcinoma, Papillary
8.Follow up study of the association between bedroom light at night exposure and body mass index in children
LI Qi, ZHOU Yi, DING Wenqin, ZUO Min, XU Yuxiang, TAO Fangbiao, SUN Ying
Chinese Journal of School Health 2024;45(4):475-478
Objective:
To explore the association between bedroom light at night (LAN) exposure and body mass index (BMI) in children at 1 year follow up, so as to provide new strategies for obesity prevention.
Methods:
From December 2021 to May 2022, cluster random sampling was conducted, involving 648 children from two primary schools in Tianchang, Chuzhou City, Anhui Province, China, to assess bedroom LAN exposure of children during sleep. A questionnaire survey and physical examination were carried out in May 2022. Multivariate linear regression was performed to analyze the correlation between bedroom LAN exposure and BMI variable quantity at 1 year follow up (May, 2023).
Results:
The median intensity of bedroom LAN exposure during the sleep episode was [1.11(0.35,3.24)lx] in children. The proportion of the sample exposed to an average light intensity of ≥3 lx was 27.5%, while 19.0% was exposed to a LAN intensity of ≥5 lx during the sleep episode. In the multivariable linear regression, after adjusting for covariates, including sex, baseline age, sleep duration, family monthly income, and maternal education level, exposure to a 1 h-average post bedtime LAN intensity of ≥3 lx ( β=0.25, 95%CI =0.05-0.44) and LAN≥5 lx ( β=0.34, 95% CI = 0.12-0.55) was associated with a gain of 0.25 and 0.34 kg/m 2, respectively, in the children s BMI at the 1 year follow up ( P < 0.05).
Conclusions
A positive correlation was found between bedroom LAN exposure and BMI variable quantity at 1 year follow up in children. Thus, reduced bedroom LAN exposure might be useful for interventions aimed at obesity prevention.
9.Mechanism of Huayu Jiedu Decoction in Inhibiting Malignant Biological Characteristics of Multiple Myeloma
Zuo-Tao LI ; Hai-Liang LI ; Zhi-Min YAN ; Jie LIN ; Xiao-Yun CHEN ; Yan-Quan LIU ; Yi-Li WANG
Journal of Experimental Hematology 2024;32(5):1438-1443
Objective:To analyze and explore the effects of Huayu Jiedu Decoction on the malignant biological characteristics of multiple myeloma(MM)cells and its molecular mechanism,so as to provide experimental basis and theoretical basis for the alternative therapy of anti-MM in traditional Chinese medicine.Methods:Different concentrations of Huayu Jiedu Decoction were used to intervene myeloma U266 cells.The changes of cell proliferation activity were detected by CCK-8 assay,apoptosis was detected by Annexin V/PI double staining flow cytometry,and apoptosis and protein expression of related signaling pathways were detected by Western blot.Real-time quantitative PCR was used to detect mRNA expression changes of high mobility group protein B1(HMGB1),CXC chemokine receptor 4(CXCR4)and interleukin-6(IL-6).Results:Huayu Jiedu Decoction inhibited the proliferative activity of U266 cells and induced their apoptosis in a concentration and time dependent manner(r=-0.713,r=-0.827).After treatment with Huayu Jiedu Decoction for 48 h,the expressions of anti-apoptotic protein Bcl-2 and survivin were down-regulated,while the expression of pro-apoptotic protein Bax was up-regulated,and the phosphorylation level of TLR4/NF-κB signaling pathway was inhibited.After intervention of Huayu Jiedu decoction,the expressions of HMGB1 and IL-6 mRNA were significantly decreased,while the expression of CXCR4 was not significantly decreased.Conclusion:Huayu Jiedu Decoction can inhibit the proliferative activity of U266 cells and induce programmed death.Its molecular mechanism may be related to regulating the expression of apoptotic proteins,inhibiting the activation of TLR4/NF-κB pathway and down-regulating the expression of HMGB1 and IL-6 mRNA.
10.Progress in enteral nutrition implementation in critically ill patients receiving vasoactive medications
Hong-Yu ZHANG ; Li-Bing JIANG ; Hai-Long WANG ; Yong-An XU ; Cheng-Fei WANG ; Feng RUAN ; Wen-Qi QI ; Su-Min ZUO ; Shan-Xiang XU
Parenteral & Enteral Nutrition 2024;31(3):176-183
Nutritional therapy is a core component of critically ill patient management,and the enteral route has become the preferred method due to its dual roles of nutrition and non-nutrition. The use of vasoactive medications makes enteral nutrition decisions more challenging for these patients. This review systematically examines the pathophysiological effects of vasoactive medications on gastrointestinal tract of critically ill patients,the current value and safety of enteral nutrition in this patient's population,summarizes the optimal strategies for implementing enteral nutrition in these patients for clinical reference.


Result Analysis
Print
Save
E-mail