1.miR-27a-3p promotes the proliferation of human hypertrophic scar fibroblasts by regulating mitogen-activated protein kinase signaling pathway
Jun LI ; Jingjing GONG ; Guobin SUN ; Rui GUO ; Yang DING ; Lijuan QIANG ; Xiaoli ZHANG ; Zhanhai FANG
Chinese Journal of Tissue Engineering Research 2025;29(8):1609-1617
BACKGROUND:Multiple studies have confirmed that mitogen-activated protein kinase(MAPK)signaling pathway is involved in cell proliferation,and microRNA(miR)is involved in the occurrence and development of hypertrophic scars.Therefore,the role of miR-27a-3p and MAPK signaling pathways in pathological scar formation has been further explored. OBJECTIVE:To explore the effect of miR-27a-3p on the proliferation of human hypertrophic scar fibroblasts through the MAPK signaling pathway. METHODS:The primary fibroblasts were isolated and collected from the skin samples.The primary fibroblasts were observed by inverted microscope and verified by immunofluorescence.The relative expression level of miR-27a-3p in tissues was detected by qRT-PCR.The target genes of hsa-miR-27a-3p were predicted using the database,and then the predicted target genes were enriched by gene ontology function analysis and biological pathway enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes.There were seven groups:blank control,negative control,miR-27a-3p mimic,miR-27a-3p inhibitor,miR-27a-3p mimic+p38 MAPK inhibitor,miR-27a-3p mimic+extracellular regulated protein kinase inhibitor,miR-27a-3p mimic+c-Jun N-terminal kinase inhibitor.Western blot was used to detect the levels of extracellular regulated protein kinase,c-Jun N-terminal kinase inhibitor.and p38 kinase and their phosphorylation levels.Cell counting kit-8 and EdU were used to detect cell proliferation. RESULTS AND CONCLUSION:Compared with normal skin fibroblasts,hypertrophic scar fibroblasts had stronger proliferative activity(P<0.05)and faster proliferation level(P<0.001).Compared with normal skin,miR-27a-3p was highly expressed in hypertrophic scars(P<0.001).Compared with the negative control group,overexpression of miR-27a-3p could promote cell proliferation activity(P<0.001)and proliferation levels(P<0.001).Compared with the negative control group,knockdown of miR-27a-3p could inhibit the proliferation activity(P<0.05)and proliferation levels(P<0.001).Compared with the negative control group,overexpression of miR-27a-3p promoted the phosphorylated levels of extracellular regulated protein kinase,c-Jun N-terminal kinase,and p38 mitogen-activated protein kinase(P<0.05).Compared with the negative control group,knockdown of miR-27a-3p inhibited the phosphorylated levels of extracellular regulated protein kinase,c-Jun N-terminal kinase,and p38 MAPK(P<0.05).Compared with the miR-27a-3p mimic group,specific inhibitors of extracellular regulated protein kinase,c-Jun N-terminal kinase,and p38 MAPK reversed the effects of miR-27a-3p on the proliferative activity(P<0.01)and proliferation level(P<0.001)of fibroblasts.To conclude,these results suggest that miR-27a-3p promotes the proliferation of human hypertrophic scar fibroblasts by activating the MAPK signaling pathway.
2.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
3.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
4.Impacts of ambient air pollutants on childhood asthma from 2019 to 2023: An analysis based on asthma outpatient visits of Nanjing Children's Hospital
Li WEI ; Xing GONG ; Lilin XIONG ; Yi ZHANG ; Fengxia SUN ; Wei PAN ; Changdi XU
Journal of Environmental and Occupational Medicine 2025;42(4):408-414
Background Asthma poses a serious threat to children's growth, development, and mental health, thus there has been an increasing focus on the control of asthma morbidity in children and the assessment of its risk factors. A growing body of research has found that exposure to ambient air pollutants an significatly increase the risk of childhood asthma. Objective To understand the changes of ambient air pollutant concentrations in Nanjing and asthma outpatient visits to Nanjing Children's Hospital, and to quantitatively analyze the effects of exposure to different ambient air pollutants on children's asthma outpatient visits. Methods Daily data of ambient air pollutants fine particulate matter (PM2.5), inhalable particle (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), meteorological factors (air temperature & relative humidity), and outpatient visits due to asthma in the hospital from January 1, 2019 to December 31, 2023 were collected, and a generalized additive model based on quasi poisson distributions was used to quantitatively analyze the short-term effects of ambient air pollutant exposure on outpatient visits due to asthma in the hospital. Results The annual average concentrations of PM2.5, PM10, SO2, and NO2 in Nanjing from 2019 to 2023 did not exceed the national limits. For single-day lagged effects, the single-pollutant model showed that the effects of PM2.5, PM10, NO2, and CO on children's asthma outpatient visits were greatest for every 10 units increase at lag0, with excess risk (ER) of 1.39% (95%CI: 0.65%, 2.14%), 1.46% (95%CI: 0.97%, 1.95%), 5.46% (95%CI: 4.36%, 6.57%), and 0.18% (95%CI: 0.11%, 0.26%), respectively, and SO2 reached the maximum effect at lag1, with an ER of 23.15% (95%CI: 13.57%, 33.53%) for each 10 units increase in concentration. Different pollutants reached their maximum cumulative lag effects at different time. The PM10, PM2.5, SO2, NO2, and CO showed the largest cumulative lag effects at lag01, lag01, lag02, lag02, and lag03, respectively, with ERs of 1.35% (95%CI: 0.77%, 1.92%), 0.96% (95%CI: 0.10%, 1.83%), 28.50% (95%CI: 15.49%, 42.98%), 6.92% (95%CI: 5.53%, 8.33%), and 0.31% (95%CI: 0.20%, 0.42%), respectively. The influences of PM2.5 and PM10 on outpatient visits due to asthma in the hospital became more pronounced with advancing age, while the associations with NO₂, SO₂, and CO were weakened as children grew older. Conclusion Ambient air pollutants (PM2.5, PM10, SO2, NO2, CO) can increase childhood asthma visits, and different pollutants have varied effects on the number of asthmatic children's visits at different ages.
5.Growth retardation and hepatopathy associated with single heterozygous mutations in the IARS1 gene: A case report
Yang LI ; Di MAO ; Liya WEI ; Chunxiu GONG
Journal of Clinical Hepatology 2025;41(4):731-735
Mutations in the IARS1 gene are rare in clinical practice, and up to now, only ten cases with detailed clinical and genetic data have been recorded in the literature. This article reports a case of growth retardation, intellectual developmental disorder, hypotonia, and hepatopathy (GRIDHH) associated with single heterozygous mutations in the IARS1 gene and summarizes the clinical and genetic features of GRIDHH, thereby expanding the genetic spectrum of GRIDHH.
6.Molecular mechanism of Shenling Baizhu powder in treatment of cancer cachexia based on network pharmacology
Gang KE ; Qingke DONG ; Shirong XIAO ; Qian GONG ; Rong LI ; Daijie WANG
Journal of Pharmaceutical Practice and Service 2025;43(5):242-250
Objective To analyze the pharmacological mechanism of Shenling Baizhu powder in the treatment of cancer cachexia based on the network pharmacological method and provide a reference for the clinical application of classical traditional Chinese medicine(TCM) prescriptions. Methods Through TCMSP and BATMAN-TCM databases, the main chemical components and their targets of the TCM prescription of Shenling Baizhu powder were obtained, and the active components of the TCM were screened according to ADME. The main targets of cancer cachexia were obtained through OMIM, Genecards, Disgenet and DRUGBANK databases, and protein interaction analysis was conducted using String platform to build a PPI network. The “drug-active ingredient-target” network of Shenling Baizhu powder was constructed by Cytoscape 3.7.2 software, and then the biological processes and pathways involved were analyzed by using Metascape platform. Finally, molecular docking verification was conducted by Discovery Studio. Results The core active ingredients of Shenling Baizhu powder in the treatment of cancer cachexia were quercetin, kaempferol, pyrolignous acid, stigmasterol, luteolin, β-sitosterol, etc. The core targets were AKT1, TP53, TNF, IL-6, MAPK3, CASP3, JUN, CTNNB1, HIF1A, EGFR, etc. The molecular docking test also showed that the top 10 active ingredients, such as pyrolignous acid, stigmasterol and β-sitosterol, had good binding activities with most of the target sites. The biological pathway of Shenling Baizhu powder in treating cancer cachexia wss mainly to regulate tumor related pathway, metabolism related pathway, inflammatory factors and appetite related pathway. Conclusion This study preliminarily revealed the mechanism of action of Shenling Baizhu powder in treating cancer cachexia with multi components, multi targets and multi pathways, which provided a basis for the clinical development and utilization of Shenling Baizhu powder.
7.Key Points for Quality Management in Phase Ⅰ Clinical Trials of Anti-Tumor Drugs
Li GONG ; Bin LIAO ; Jie SHEN ; Juan ZHAO ; Yi GONG ; Xiaoxiao LU ; Huiyao YANG ; Sha LI ; Yongsheng LI
Cancer Research on Prevention and Treatment 2025;52(5):347-354
Phase Ⅰ clinical trials play a crucial role in the research and development of new drugs, serving as the initial studies to assess their safety, tolerability, effectiveness, and pharmacokinetic properties in humans. These trials involve uncertainties regarding safety and efficacy. Comprehensive management of all aspects of phase Ⅰ clinical trials for anti-tumor drugs is crucial to protect the rights and safety of participants. This article provides an in-depth analysis of the key points and precautions necessary for effective quality control throughout the process. The analysis is informed by guidelines such as the “Good Clinical Practice for Drugs” “Key Points and Judgment Principles for Drug Registration Verification” “Key Points and Judgment Principles for Supervision and Inspection of Drug Clinical Trial Institutions” and the standard operating procedures for quality control of the center. Topics discussed include informed consent, inclusion criteria, experimental drugs, biological samples, adverse events, and serious adverse events. The goal is to standardize quality control in phase Ⅰ clinical trials of anti-tumor drugs, ensure the authenticity and reliability of clinical trial data, and protect the rights and safety of participants.
8.Traditional Chinese Medicine Intervention in Signaling Pathways Related to Benign Prostatic Hyperplasia: A Review
Shenglong LI ; Ganggang LU ; Yonglin LIANG ; Xu MA ; Meisheng GONG ; Hui LI ; Yuanbo ZHAO ; Dacheng TIAN ; Yongqiang ZHAO ; Xixiang LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):287-295
Benign prostatic hyperplasia (BPH) is a common chronic progressive disease in middle-aged and elderly men, characterized by prostate enlargement and bladder outlet obstruction, leading to symptoms such as frequent urination, urgency, and difficulty urinating. The pathogenesis of BPH involves factors such as aging, hormonal metabolic abnormalities, inflammatory responses, and imbalances in cell proliferation and apoptosis. Currently, the main treatment methods for BPH include medication, physical therapy, and surgical intervention. However, medication may cause side effects like sexual dysfunction and hypotension, physical therapy has limited efficacy, and surgery carries risks and postoperative complications. Therefore, there is an urgent need to find safer and more effective treatment options. Traditional Chinese medicine (TCM), with its focus on treatment based on syndrome differentiation and a holistic approach, offers therapeutic advantages through multiple pathways and mechanisms. Recent studies have shown that TCM regulates pathways such as phosphoinositide-3-kinase/protein kinase B (PI3K/Akt), nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPK), nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE), androgen receptor (AR), transforming growth factor-β (TGF-β)/Smad, and hypoxia-inducible factor-1α/vascular endothelial growth factor (HIF-1α/VEGF) to inhibit oxidative stress and inflammatory response, reduce prostate cell proliferation, and promote apoptosis, thus exerting therapeutic effects. This article summarizes and analyzes the roles of these signaling pathways in the occurrence and development of BPH and the mechanisms of TCM intervention, aiming to provide scientific evidence for clinical treatment and drug development for BPH.
9.Traditional Chinese Medicine Intervention in Signaling Pathways Related to Benign Prostatic Hyperplasia: A Review
Shenglong LI ; Ganggang LU ; Yonglin LIANG ; Xu MA ; Meisheng GONG ; Hui LI ; Yuanbo ZHAO ; Dacheng TIAN ; Yongqiang ZHAO ; Xixiang LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):287-295
Benign prostatic hyperplasia (BPH) is a common chronic progressive disease in middle-aged and elderly men, characterized by prostate enlargement and bladder outlet obstruction, leading to symptoms such as frequent urination, urgency, and difficulty urinating. The pathogenesis of BPH involves factors such as aging, hormonal metabolic abnormalities, inflammatory responses, and imbalances in cell proliferation and apoptosis. Currently, the main treatment methods for BPH include medication, physical therapy, and surgical intervention. However, medication may cause side effects like sexual dysfunction and hypotension, physical therapy has limited efficacy, and surgery carries risks and postoperative complications. Therefore, there is an urgent need to find safer and more effective treatment options. Traditional Chinese medicine (TCM), with its focus on treatment based on syndrome differentiation and a holistic approach, offers therapeutic advantages through multiple pathways and mechanisms. Recent studies have shown that TCM regulates pathways such as phosphoinositide-3-kinase/protein kinase B (PI3K/Akt), nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPK), nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE), androgen receptor (AR), transforming growth factor-β (TGF-β)/Smad, and hypoxia-inducible factor-1α/vascular endothelial growth factor (HIF-1α/VEGF) to inhibit oxidative stress and inflammatory response, reduce prostate cell proliferation, and promote apoptosis, thus exerting therapeutic effects. This article summarizes and analyzes the roles of these signaling pathways in the occurrence and development of BPH and the mechanisms of TCM intervention, aiming to provide scientific evidence for clinical treatment and drug development for BPH.
10.A qualitative study on the causes of delayed decisions to seek medical attention among patients with ischemic stroke
Xue LI ; Kaili FAN ; Shouping GONG
Chinese Medical Ethics 2025;38(5):596-601
ObjectiveTo learn the inner experience of decisions to seek medical attention among patients with ischemic stroke and to explore the factors that affect patients’ early decisions to seek medical attention, providing a basis for formulating intervention measures to reduce patient delays. MethodsUsing qualitative research methods, semi-structured in-depth interviews were conducted with 24 patients with ischemic stroke who had delayed seeking medical attention through purposive sampling, and the data were analyzed by category analysis method. ResultsThe five major themes that affected ischemic stroke patients’ decisions to seek medical attention were symptom experience (insufficient attention to disease and the impact of symptoms on the patients), symptom assessment (symptom perception, symptom interpretation, and symptom recognition), symptom response (psychological denial and self-relief), prior knowledge of the diseases (deficient knowledge and stroke experience), as well as environmental-social factors (morbidity context, external information support, and medical insurance). ConclusionUnder the guidance of cognitive, psychosocial, and environmental frameworks, targeted intervention strategies should be proposed to reduce the incidence of delayed decisions to seek medical attention among patients with ischemic stroke.

Result Analysis
Print
Save
E-mail