1.Combined Therapy of Traditional Chinese and Western Medicine for Hepatitis B Virus Infection: A Review
Xuan WU ; Hui LI ; Jian HUANG ; Xikun YANG ; Yan ZENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):279-288
Hepatitis B virus (HBV) infection is the primary cause of viral hepatitis and represents a substantial disease burden in China. However, effective and safe agents capable of completely eliminating HBV DNA are still lacking. In modern medicine, anti-HBV strategies mainly target covalently closed circular DNA (cccDNA), among other mechanisms, and multiple novel drugs are currently under clinical investigation. Traditional medicine has been shown to exert anti-HBV effects through direct pathways, such as blocking viral entry, as well as indirect pathways, including the regulation of programmed cell death. Studies have confirmed that the integration of traditional Chinese medicine (TCM) and Western medicine in treating HBV infection and its related complications offers complementary advantages, particularly in enhancing HBV clearance rates, improving liver function, preventing various complications, and delaying the progression from hepatic fibrosis to hepatocellular carcinoma. This review focuses on advances in anti-HBV research involving TCM, Western medicine, and their integrated application, aiming to provide a basis for integrated HBV therapy and new drug development.
2.Role and Mechanism of Cucurbitacin B in Suppressing Proliferation of Breast Cancer 4T1 Cells via Inducing Ferroptosis
Yidan RUAN ; Huizhong ZHANG ; Huating HUANG ; Pingzhi ZHANG ; Aina YAO ; Yongqiang ZHANG ; Xiaohan XU ; Shiman LI ; Jian NI ; Xiaoxu DONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):91-97
ObjectiveTo explore the role of cucurbitacin B (CuB) in inducing ferroptosis in 4T1 cells and its mechanism. MethodsThe effects of CuB(0.2, 0.4, 0.8 μmol·L-1)on the proliferation ability of 4T1 cells in vitro were detected using the methyl thiazolyl tetrazolium (MTT) assay. The clonogenic ability of 4T1 cells was detected by the plate cloning assay, and the levels of lactate dehydrogenase (LDH) in 4T1 cells were detected by the use of a kit. The mitochondrial membrane potential and reactive oxygen species (ROS) levels in 4T1 cells were detected by flow cytometry, and the mitochondrial ultrastructure of 4T1 cells was observed by transmission electron microscopy. The western blot was used to detect the expression of ferroptosis-related protein p53 in 4T1 cells, solute carrier family 7 member 11 (SCL7A11), glutathione peroxidase 4 (GPX4), long-chain acyl-CoA synthetase 4 (ACSL4), transferrin receptor protein 1 (TFR1), and ferritin heavy chain 1 (FTH1). ResultsCompared with that in the blank group, the survival rate of 4T1 cells in CuB groups was significantly decreased (P<0.05), and the number of cell clones in CuB groups was significantly reduced (P<0.01). In addition, compared with that in the blank group, the leakage of LDH in cells in CuB groups was significantly increased (P<0.01), and the mitochondrial membrane potential of cells in CuB groups decreased significantly (P<0.01). Cellular ROS levels were significantly elevated in CuB groups (P<0.01). The mitochondria of cells in CuB groups were obviously wrinkled, and the mitochondrial cristae were reduced or even disappeared. Compared with that in the blank group, the protein expression of p53, ACSL4, and TFR1 were significantly up-regulated in CuB groups (P<0.05), and that of SLC7A11, GPX4, and FTH1 were significantly down-regulated (P<0.05). ConclusionCuB may inhibit SLC7A11 and GPX4 expression by up-regulating the expression of p53, which in turn regulates the p53/SLC7A11/GPX4 signaling pathway axis and accelerates the generation of lipid peroxidation substrate by up-regulating the expression of ACSL4. It up-regulates TFR1 expression to promote cellular uptake of Fe3+ and down-regulates the expression of FTH1 to reduce the ability of iron storage, resulting in an elevated free Fe2+ level. It catalyzes the Fenton reaction, generates excess ROS, imbalances the antioxidant system and iron metabolism, and then induces ferroptosis in 4T1 cells.
3.Role and Mechanism of Cucurbitacin B in Suppressing Proliferation of Breast Cancer 4T1 Cells via Inducing Ferroptosis
Yidan RUAN ; Huizhong ZHANG ; Huating HUANG ; Pingzhi ZHANG ; Aina YAO ; Yongqiang ZHANG ; Xiaohan XU ; Shiman LI ; Jian NI ; Xiaoxu DONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):91-97
ObjectiveTo explore the role of cucurbitacin B (CuB) in inducing ferroptosis in 4T1 cells and its mechanism. MethodsThe effects of CuB(0.2, 0.4, 0.8 μmol·L-1)on the proliferation ability of 4T1 cells in vitro were detected using the methyl thiazolyl tetrazolium (MTT) assay. The clonogenic ability of 4T1 cells was detected by the plate cloning assay, and the levels of lactate dehydrogenase (LDH) in 4T1 cells were detected by the use of a kit. The mitochondrial membrane potential and reactive oxygen species (ROS) levels in 4T1 cells were detected by flow cytometry, and the mitochondrial ultrastructure of 4T1 cells was observed by transmission electron microscopy. The western blot was used to detect the expression of ferroptosis-related protein p53 in 4T1 cells, solute carrier family 7 member 11 (SCL7A11), glutathione peroxidase 4 (GPX4), long-chain acyl-CoA synthetase 4 (ACSL4), transferrin receptor protein 1 (TFR1), and ferritin heavy chain 1 (FTH1). ResultsCompared with that in the blank group, the survival rate of 4T1 cells in CuB groups was significantly decreased (P<0.05), and the number of cell clones in CuB groups was significantly reduced (P<0.01). In addition, compared with that in the blank group, the leakage of LDH in cells in CuB groups was significantly increased (P<0.01), and the mitochondrial membrane potential of cells in CuB groups decreased significantly (P<0.01). Cellular ROS levels were significantly elevated in CuB groups (P<0.01). The mitochondria of cells in CuB groups were obviously wrinkled, and the mitochondrial cristae were reduced or even disappeared. Compared with that in the blank group, the protein expression of p53, ACSL4, and TFR1 were significantly up-regulated in CuB groups (P<0.05), and that of SLC7A11, GPX4, and FTH1 were significantly down-regulated (P<0.05). ConclusionCuB may inhibit SLC7A11 and GPX4 expression by up-regulating the expression of p53, which in turn regulates the p53/SLC7A11/GPX4 signaling pathway axis and accelerates the generation of lipid peroxidation substrate by up-regulating the expression of ACSL4. It up-regulates TFR1 expression to promote cellular uptake of Fe3+ and down-regulates the expression of FTH1 to reduce the ability of iron storage, resulting in an elevated free Fe2+ level. It catalyzes the Fenton reaction, generates excess ROS, imbalances the antioxidant system and iron metabolism, and then induces ferroptosis in 4T1 cells.
4.Applications of Vaterite in Drug Loading and Controlled Release
Xiao-Hui SONG ; Ming-Yu PAN ; Jian-Feng XU ; Zheng-Yu HUANG ; Qing PAN ; Qing-Ning LI
Progress in Biochemistry and Biophysics 2025;52(1):162-181
Currently, the drug delivery system (DDS) based on nanomaterials has become a hot interdisciplinary research topic. One of the core issues is drug loading and controlled release, in which the key lever is carriers. Vaterite, as an inorganic porous nano-material, is one metastable structure of calcium carbonate, full of micro or nano porous. Recently, vaterite has attracted more and more attention, due to its significant advantages, such as rich resources, easy preparations, low cost, simple loading procedures, good biocompatibility and many other good points. Vaterite, gained from suitable preparation strategies, can not only possess the good drug carrying performance, like high loading capacity and stable loading efficiency, but also improve the drug release ability, showing the better drug delivery effects, such as targeting release, pH sensitive release, photothermal controlled release, magnetic assistant release, optothermal controlled release. At the same time, the vaterite carriers, with good safety itself, can protect proteins, enzymes, or other drugs from degradation or inactivation, help imaging or visualization with loading fluorescent drugs in vitro and in vivo, and play synergistic effects with other therapy approaches, like photodynamic therapy, sonodynamic therapy, and thermochemotherapy. Latterly, some renewed reports in drug loading and controlled release have led to their widespread applications in diverse fields, from cell level to clinical studies. This review introduces the basic characteristics of vaterite and briefly summarizes its research history, followed by synthesis strategies. We subsequently highlight recent developments in drug loading and controlled release, with an emphasis on the advantages, quantity capacity, and comparations. Furthermore, new opportunities for using vaterite in cell level and animal level are detailed. Finally, the possible problems and development trends are discussed.
5.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields.
6.Construction of management index system for rational drug use of key monitoring drugs
Mingxiong ZHANG ; Wanying QIN ; Jian HUANG ; Dan WANG ; Li LI ; Yinghui BU ; Ming YAN ; Kejia LI
China Pharmacy 2025;36(7):784-788
OBJECTIVE To establish management index system for rational drug use of key monitoring drugs, and provide reference for the management of key monitoring drugs in the hospitals. METHODS First, the management index system for rational drug use of key monitoring drugs was drafted by collecting the evidence from related medical literature. Next, using a modified Delphi method, twenty experienced experts from the fields of pharmacy, medical practice, healthcare insurance, and finance were selected to participate in two rounds of questionnaire consultations. Based on the expert enthusiasm coefficient, authority coefficient, degree of opinion concentration, and degree of coordination, the final indicators were determined to establish a management index system for rational drug use of key monitored drugs in medical institutions. RESULTS The expert enthusiasm coefficients reached 100% in both rounds of consultation. In first-level, second-level and third-level indicators, the authority coefficients of experts were 0.89, 0.86 and 0.87, and coordination coefficients of the experts in importance score were 0.300 (P< 0.05), 0.125 (P<0.05) and 0.139 (P<0.05), respectively. The average score for the importance of all indicators reached over 3.5, in which the full score ratio ranged from 35% to 100%. Except that the variation coefficient of a third-level indicator “number of specifications purchased for key monitored drugs” was 0.26, the variation coefficients of rest indicators were less than or equal to 0.25. Based on the results of expert consultation, final version of the management index system established in this study, including two first-level indicators (drug procurement and use, and rational drug use), five second-level indicators (such as the accessibility, cost-effectiveness) and twenty third-level indicators (such as the number of specifications purchased for key monitored drugs, the increase in the cost of key monitored drugs). CONCLUSIONS The management index system established in this study possesses high reliability and strong operability, and may provide a reference for the management of key monitoring drugs in the hospitals.
7.Research on software development and smart manufacturing platform incorporating near-infrared spectroscopy for measuring traditional Chinese medicine manufacturing process.
Yan-Fei WU ; Hui XU ; Kai-Yi WANG ; Hui-Min FENG ; Xiao-Yi LIU ; Nan LI ; Zhi-Jian ZHONG ; Ze-Xiu ZHANG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(9):2324-2333
Process analytical technology(PAT) is a key means for digital transformation and upgrading of the traditional Chinese medicine(TCM) manufacturing process, serving as an important guarantee for consistent and controllable TCM product quality. Near-infrared(NIR) spectroscopy has become the core technology for measuring the TCM manufacturing process. By incorporating NIR spectroscopy into PAT and starting from the construction of a smart platform for the TCM manufacturing process, this paper systematically described the development history and innovative application of the combination of NIR spectroscopy with chemometrics in measuring the TCM manufacturing process by the research team over the past two decades. Additionally, it explored the application of a validation method based on accuracy profile(AP) in the practice of NIR spectroscopy. Furthermore, the software development progress driven by NIR spectroscopy supported by modeling technology was analyzed, and the prospect of integrating NIR spectroscopy in smart factory control platforms was exemplified with the construction practices of related platforms. By integrating with the smart platform, NIR spectroscopy could improve production efficiency and guarantee product quality. Finally, the prospect of the smart platform application in measuring the TCM manufacturing process was projected. It is believed that the software development for NIR spectroscopy and the smart manufacturing platform will provide strong technical support for TCM digitalization and industrialization.
Spectroscopy, Near-Infrared/methods*
;
Drugs, Chinese Herbal/analysis*
;
Software
;
Medicine, Chinese Traditional
;
Quality Control
8.Fourth national survey of traditional Chinese medicine resources and protection of traditional knowledge of medication use among ethnic minorities.
Jiang-Wei DU ; Xiao-Bo ZHANG ; Jian-Zhi CUI ; Shao-Hua YANG ; Hai-Tao LI ; Zhi-Yong LI ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(9):2349-2355
Traditional Chinese medicine(TCM) resources are the essential material foundation for the development of TCM. The national survey of TCM resources serves as a periodic summary of these resources, ensuring the continuity, prosperity, and development of TCM in China. Since 1949, four national surveys of TCM resources have been conducted. The fourth survey incorporated an investigation into traditional knowledge related to TCM resources, including the traditional medicinal knowledge of Chinese ethnic minorities, with the goal of systematically exploring, preserving, and inheriting this knowledge. This manuscript provides an overview of the basic findings from the first three national surveys of TCM resources, while also clarifying the concepts, categories, forms, carriers, and acquisition pathways of traditional knowledge related to TCM resources. A preliminary summary of the findings from traditional knowledge investigations reported in current literature is also presented. Based on the fourth survey, this manuscript emphasizes the urgency of developing public medical knowledge through empirically-based investigations, the excavation, and compilation of traditional knowledge. It also outlines the potential for conducting "precise" investigations based on first-hand data obtained from the survey, as well as facilitating the discovery and evaluation of new medicines using traditional knowledge related to ethnic minority medicinal practices. This manuscript is expected to provide valuable insights for promoting the health and industrial development of ethnic minority populations in the post-"survey" phase.
Humans
;
Medicine, Chinese Traditional
;
China/ethnology*
;
Minority Groups
;
Ethnicity
;
Drugs, Chinese Herbal/therapeutic use*
;
Health Knowledge, Attitudes, Practice/ethnology*
;
Surveys and Questionnaires
9.Integrated multiomics reveal mechanism of Aidi Injection in attenuating doxorubicin-induced cardiotoxicity.
Yan-Li WANG ; Yu-Jie TU ; Jian-Hua ZHU ; Lin ZHENG ; Yong HUANG ; Jia SUN ; Yong-Jun LI ; Jie PAN ; Chun-Hua LIU ; Yuan LU
China Journal of Chinese Materia Medica 2025;50(8):2245-2259
The combination of Aidi Injection(ADI) and doxorubicin(DOX) is a common strategy in the treatment of cancer, which can achieve synergistic anti-tumor effects while attenuating the cardiotoxicity caused by DOX. This study aims to investigate the mechanism of ADI in attenuating DOX-induced cardiotoxicity by multi-omics. DOX was used to induce cardiotoxicity in mice, and the cardioprotective effects of ADI were evaluated based on biochemical indicators and pathological changes. Based on the results, transcriptomics, proteomics, and metabolomics were employed to analyze the changes of endogenous substances in different physiological states. Furthermore, data from multiple omics were integrated to screen key regulatory pathways by which ADI attenuated DOX-induced cardiotoxicity, and important target proteins were selected for measurement by ELISA kits and immunohistochemical analysis. The results showed that ADI significantly reduced the levels of cardiac troponin T(cTnT) and N-terminal pro-B-type natriuretic peptide(NT-proBNP) and effectively ameliorated myocardial fibrosis and intracellular vacuolization, indicating that ADI showed therapeutic effect on DOX-induced cardiotoxicity. The transcriptomics analysis screened out a total of 400 differentially expressed genes(DEGs), which were mainly enriched in inflammatory response, oxidative stress, and myocardial fibrosis. After proteomics analysis, 70 differentially expressed proteins were selected, which were mainly enriched in the inflammatory response, cardiac function, and energy metabolism. A total of 51 differentially expressed metabolites were screened by the metabolomics analysis, and they were mainly enriched in multiple signaling pathways, including the inflammatory response, lipid metabolism, and energy metabolism. The integrated data of multiple omics showed that linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism pathways played an important role in DOX-induced cardiotoxicity, and ADI may exert therapeutic effects by modulating these pathways. Target validation experiments suggested that ADI significantly regulated abnormal protein levels of cyclooxygenase-1(COX-1), cyclooxygenase-2(COX-2), prostaglandin H2(PGH2), and prostaglandin D2(PGD2) in the model group. In conclusion, ADI may attenuate DOX-induced cardiotoxicity by regulating linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism, thus alleviating inflammation of the body.
Doxorubicin/toxicity*
;
Animals
;
Mice
;
Cardiotoxicity/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Proteomics
;
Metabolomics
;
Injections
;
Humans
;
Multiomics
10.Preparation of baicalin-berberine complex nanocrystal enteric microspheres and pharmacodynamic evaluation of ulcerative colitis treatment in rats.
Xiao-Chao HUANG ; Yi-Wen HU ; Peng-Yu SHEN ; Rui-Hong JIAN ; Dong-Li QI ; Zhi-Dong LIU ; Jia-Xin PI
China Journal of Chinese Materia Medica 2025;50(15):4263-4274
To enhance the therapeutic efficacy of the baicalin-berberine complex(BA-BBR) in the treatment of ulcerative colitis(UC), BA-BBR nanocrystal microspheres(BA-BBR NC MS) were prepared using the dropping method. The microspheres were characterized in terms of morphology, particle size, differential scanning calorimetry(DSC), and powder X-ray diffraction(XRD). The release profiles of BA and BBR from the microspheres were measured, and the drug release mechanism was investigated. A rat model of UC was induced by 5% dextran sodium sulfate(DSS) and treated continuously for 7 days to evaluate the therapeutic effects of different formulations. The results showed that the prepared BA-BBR MS and BA-BBR NC MS were uniform gel spheres with particle sizes of(1.77±0.16) mm and(1.67±0.08) mm, respectively. After drying, the gels collapsed inward and exhibited a rough surface. During the preparation process, the BA-BBR nanocrystals(BA-BBR NC) were uniformly encapsulated within the microspheres. The release profiles of the microspheres followed a first-order kinetic model, and the 12-hour cumulative release of BA and BBR from BA-BBR NC MS was higher than that from BA-BBR MS. Compared with BA-BBR, BA-BBR NC, and BA-BBR MS, BA-BBR NC MS further alleviated UC symptoms in rats, most significantly reducing the levels of TNF-α, IL-1β, IL-6, and MPO, while increasing the level of IL-4 in colon tissues. These results indicate that BA-BBR NC MS, based on a "nano-in-micro" design, can deliver BA-BBR to the intestine and exert significant therapeutic effects in a UC rat model, suggesting it as a promising new strategy for the treatment of UC.
Animals
;
Colitis, Ulcerative/metabolism*
;
Rats
;
Nanoparticles/chemistry*
;
Microspheres
;
Male
;
Berberine/administration & dosage*
;
Flavonoids/administration & dosage*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Particle Size
;
Tumor Necrosis Factor-alpha/immunology*
;
Drug Liberation
;
Drug Compounding

Result Analysis
Print
Save
E-mail