1.The Effect of Zhiqiao Gancao Decoction (枳壳甘草汤) on Intervertebral Disc Nucleus Pulposus Cell Apoptosis and the Hippo-YAP/TAZ Signaling Pathway in Tail Intervertebral Disc Degeneration Model Rats
Zaishi ZHU ; Zeling HUANG ; Junming CHEN ; Bo XU ; Binjie LU ; Hua CHEN ; Xingxing DUAN ; Yuwei LI ; Xiaofeng SHEN
Journal of Traditional Chinese Medicine 2025;66(5):509-517
ObjectiveTo investigate the possible mechanism by which Zhiqiao Gancao Decoction (枳壳甘草汤, ZGD) delays intervertebral disc degeneration (IDD) based on the Hippo-yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling pathway. MethodsA total of 50 SD rats were randomly divided into sham surgery group, model group, low-dose ZGD group, high-dose ZGD group, and high-dose ZGD + inhibitor group, with 10 rats in each group. In the sham surgery group, the rats were pierced in the skin and muscle at the Co6/7/8 segments of the tail with a 21G needle (depth approximately 2 mm) without damaging the intervertebral disc. In the other groups, rats were injected with a 21G needle at the Co6/7/8 segments of the tail to establish an IDD model by piercing the tail intervertebral disc 5 mm. One week after modeling, rats in the low-dose and high-dose ZGD groups were given 6.24 and 12.24 g/(kg·d) of the decoction via gastric gavage, respectively. The high-dose ZGD + inhibitor group was given 12.24 g/(kg·d) of the decoction and an intraperitoneal injection of YAP/TAZ inhibitor Verteporfin 10 mg/kg. The sham surgery and model groups were given 5 ml/(kg·d) of normal saline via gavage. The gavage was given once a day, and the intraperitoneal injection was given every other day. After 4 weeks of continuous intervention, the pathological changes of the tail intervertebral discs were observed using HE staining, Oil Red O-Green staining, and Toluidine Blue staining. Immunohistochemistry was used to detect the expression of aggrecan and MMP3 in the nucleus pulposus. TUNEL fluorescence staining was performed to detect apoptosis in the nucleus pulposus, and the apoptosis rate was calculated. Western blot was used to detect the Hippo-YAP/TAZ signaling pathway, including YAP, phosphorylated YAP (p-YAP), phosphorylated MST1/2 (p-MST1/2), phosphorylated TAZ (p-TAZ) and apoptosis-related proteins, such as Cleaved Caspase 3, P53, Bcl-2 and Bax. ResultsCompared with sham surgery group, the rats in the model group showed significant degenerative changes in the intervertebral disc. The levels of aggrecan, Bcl-2, and YAP proteins in the nucleus pulposus decreased, while the levels of p-MST1/2, p-YAP, p-TAZ, P53, Bax, Cleaved Caspase 3, MMP3 proteins, and the apoptosis rate increased (P < 0.01). Compared with the model group, the drug intervention groups showed partial recovery in intervertebral disc degeneration. The levels of aggrecan, Bcl-2, and YAP proteins increased, while the levels of p-MST1/2, p-YAP, p-TAZ, P53, Bax, Cleaved Caspase 3, MMP3 proteins, and the apoptosis rate decreased (P<0.05 or P<0.01). The high-dose ZGD group showed more significant recovery in intervertebral disc degeneration compared to the low-dose ZGD group, with a decrease in the levels of p-MST1/2, p-YAP, p-TAZ, P53, Bax, Cleaved Caspase 3, MMP3 proteins, and apoptosis rate, and an increase in the levels of aggrecan, Bcl-2, and YAP proteins (P<0.05 or P<0.01). Compared with the high-dose ZGD group, the high-dose ZGD + inhibitor group showed a reduced recovery in intervertebral disc degeneration, with an increase in the levels of p-MST1/2, p-YAP, p-TAZ, P53, Bax, Cleaved Caspase 3, MMP3 proteins, and apoptosis rate, and a decrease in the levels of aggrecan, Bcl-2, and YAP proteins (P<0.05 or P<0.01). ConclusionZGD may delay intervertebral disc degeneration by inhibiting the phosphorylation of YAP in the nucleus pulposus, maintaining the function of the Hippo-YAP/TAZ signaling pathway, and reducing apoptosis of nucleus pulposus cells.
2.Optimization of simmering technology of Rheum palmatum from Menghe Medical School and the changes of chemical components after processing
Jianglin XUE ; Yuxin LIU ; Pei ZHONG ; Chanming LIU ; Tulin LU ; Lin LI ; Xiaojing YAN ; Yueqin ZHU ; Feng HUA ; Wei HUANG
China Pharmacy 2025;36(1):44-50
OBJECTIVE To optimize the simmering technology of Rheum palmatum from Menghe Medical School and compare the difference of chemical components before and after processing. METHODS Using appearance score, the contents of gallic acid, 5-hydroxymethylfurfural (5-HMF), sennoside A+sennoside B, combined anthraquinone and free anthraquinone as indexes, analytic hierarchy process (AHP)-entropy weight method was used to calculate the comprehensive score of evaluation indicators; the orthogonal experiment was designed to optimize the processing technology of simmering R. palmatum with fire temperature, simmering time, paper layer number and paper wrapping time as factors; validation test was conducted. The changes in the contents of five anthraquinones (aloe-emodin, rhein, emodin, chrysophanol, physcion), five anthraquinone glycosides (barbaloin, rheinoside, rhubarb glycoside, emodin glycoside, and emodin methyl ether glycoside), two sennosides (sennoside A, sennoside B), gallic acid and 5-HMF were compared between simmered R. palmatum prepared by optimized technology and R. palmatum. RESULTS The optimal processing conditions of R. palmatum was as follows: each 80 g R. palmatum was wrapped with a layer of wet paper for 0.5 h, simmered on high heat for 20 min and then simmered at 140 ℃, the total simmering time was 2.5 h. The average comprehensive score of 3 validation tests was 94.10 (RSD<1.0%). After simmering, the contents of five anthraquinones and two sennosides were decreased significantly, while those of 5 free anthraquinones and gallic acid were increased to different extents; a new component 5-HMF was formed. CONCLUSIONS This study successfully optimizes the simmering technology of R. palmatum. There is a significant difference in the chemical components before and after processing, which can explain that simmering technology slows down the relase of R. palmatum and beneficiate it.
4.Mechanism of Wumen Zhiqiao gancao decoction inhibiting pathological angiogenesis in degenerative intervertebral discs by regulating HIF-1α/VEGF/Ang signal axis
Zeling HUANG ; Zaishi ZHU ; Yuwei LI ; Bo XU ; Junming CHEN ; Baofei ZHANG ; Binjie LU ; Xuefeng CAI ; Hua CHEN
China Pharmacy 2025;36(7):807-814
OBJECTIVE To explore the effect and mechanism of Zhiqiao gancao decoction (ZQGCD) on pathological angiogenesis of degenerative intervertebral disc. METHODS The rats were randomly divided into sham operation group (normal saline), model group (normal saline), hypoxia inducible factor-1α (HIF-1α) inhibitor (YC-1) group [2 mg/(kg·d), tail vein injection], and ZQGCD low-dose, medium-dose and high-dose groups [3.06, 6.12, 12.24 g/(kg·d)], with 8 rats in each group. Except for sham operation group, lumbar disc degeneration model of rat was constructed in all other groups. After modeling, they were given relevant medicine once a day, for consecutive 3 weeks. After the last medication, pathological changes and angiogenesis of the intervertebral disc tissue in rats were observed; the levels of inflammatory factors [interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α)] and the expressions of angiogenesis-related proteins [HIF-1α, vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), angiotensin 1(Ang 1), Ang 2] in the com intervertebral disc tissue in rats were all determined. In cell experiment, the primary nucleus pulposus cells were isolated and cultured from rats, and cellular degeneration was induced using 50 ng/mL TNF-α. The cells were divided into blank control group (10% blank control serum), TNF-α group (10% blank control serum), YC-1 group (10% blank control serum+0.2 mmol/L YC-1), and 5%, 10%, 15% drug-containing serum group (5%, 10%, 15% drug-containing serum). After 24 hours of intervention, the nucleus pulposus cells were co-cultured with HUVEC. The expressions of Collagen Ⅱ, matrix metalloproteinase-3 (MMP-3) in nucleus pulposus cells were detected. HUVEC proliferation, migration and tube forming ability were detected, and the expression levels of the HIF-1α/VEGF/Ang signal axis and angiogenesis- related proteins (add MMP-2, MMP-9) in HUVEC were detected. RESULTS Animal experiments had shown that compared with model group, the positive expression of CD31 in the intervertebral disc tissues of rats in each drug group was down-regulated (P< 0.05), the levels of inflammatory factors and angiogenesis-related proteins were decreased significantly (P<0.05), and the pathological changes in the intervertebral disc were alleviated. Cell experiments had shown that compared with TNF-α group, the expression of Collagen Ⅱ in nucleus pulposus cells of all drug groups was significantly up-regulated (P<0.05), and the expression of MMP-3 was significantly down-regulated (P<0.05); the proliferation, migration and tubulogenesis of HUVEC were significantly weakened (P<0.05). The mRNA and protein expressions of HIF-1α, VEGF, Ang 2 as well as the expression of angiogenesis-related proteins (except for the expression of Ang 2 mRNA and HIF-1α, VEGFR2, Ang 2 protein in 5% drug- containing serum group) were significantly down-regulated (P<0.05). CONCLUSIONS ZQGCD may inhibit the HIF-1α/VEGF/ Ang signal axis to weaken the angiogenic ability of vascular endothelial cells, improve pathological angiogenesis in the intervertebral disc, and delay the degeneration of the intervertebral disc.
7.Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy.
Chaoqun WANG ; Hongjun YU ; Shounan LU ; Shanjia KE ; Yanan XU ; Zhigang FENG ; Baolin QIAN ; Miaoyu BAI ; Bing YIN ; Xinglong LI ; Yongliang HUA ; Zhongyu LI ; Dong CHEN ; Bangliang CHEN ; Yongzhi ZHOU ; Shangha PAN ; Yao FU ; Hongchi JIANG ; Dawei WANG ; Yong MA
Chinese Medical Journal 2025;138(22):2993-3003
BACKGROUND:
Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.
METHODS:
In the present study, we established a 70% hepatic warm I/R injury and partial hepatectomy (30% resection) animal models in vivo and hepatocytes anoxia/reoxygenation (A/R) models in vitro with ATO pretreatment and further assessed liver function by histopathologic changes, enzyme-linked immunosorbent assay, cell counting kit-8, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Small interfering RNA (siRNA) for extracellular signal-regulated kinase (ERK) 1/2 was transfected to evaluate the role of ERK1/2 pathway during HIRI, followed by ATO pretreatment. The dynamic process of autophagic flux and numbers of autophagosomes were detected by green fluorescent protein-monomeric red fluorescent protein-LC3 (GFP-mRFP-LC3) staining and transmission electron microscopy.
RESULTS:
A low dose of ATO (0.75 μmol/L in vitro and 1 mg/kg in vivo ) significantly reduced tissue necrosis, inflammatory infiltration, and hepatocyte apoptosis during the process of hepatic I/R. Meanwhile, ATO obviously promoted the ability of cell proliferation and liver regeneration. Mechanistically, in vitro studies have shown that nontoxic concentrations of ATO can activate both ERK and phosphoinositide 3-kinase-serine/threonine kinase (PI3K-AKT) pathways and further induce autophagy. The hepatoprotective mechanism of ATO, at least in part, relies on the effects of ATO on the activation of autophagy, which is ERK-dependent.
CONCLUSION
Low, non-toxic doses of ATO can activate ERK/PI3K-AKT pathways and induce ERK-dependent autophagy in hepatocytes, protecting liver against I/R injury and accelerating hepatocyte regeneration after partial hepatectomy.
Animals
;
Arsenic Trioxide
;
Autophagy/physiology*
;
Reperfusion Injury/prevention & control*
;
Mice
;
Male
;
Proto-Oncogene Proteins c-akt/physiology*
;
Arsenicals/therapeutic use*
;
Oxides/therapeutic use*
;
Liver/metabolism*
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Mice, Inbred C57BL
8.Inhibition of the mitochondrial metabolic enzyme OGDC affects erythroid development.
Bin HU ; Mao-Hua LI ; Han GONG ; Lu HAN ; Jing LIU
Acta Physiologica Sinica 2025;77(3):395-407
Mitochondrial metabolism is crucial for providing energy and heme precursors during erythroid development. Oxoglutarate dehydrogenase complex (OGDC) is a key enzyme in the mitochondrial tricarboxylic acid (TCA) cycle, and its level gradually increases during erythroid development, indicating its significant role in erythroid development. The aim of the present study was to explore the role and mechanism of OGDC in erythroid development. In this study, we treated erythroid progenitor cells with CPI-613, a novel lipoic acid analog that competitively inhibits OGDC. The results showed that CPI-613 inhibited erythropoietin (EPO)-induced differentiation and enucleation of human CD34+ hematopoietic stem cells into erythroid cells, suppressed cell proliferation, and induced apoptosis. The results of in vivo experiments showed that CPI-613 also hindered the recovery of mice from acute hemolytic anemia. Further mechanism research results showed that CPI-613 increased reactive oxygen species (ROS) in erythroid progenitor cells, inhibited mitochondrial respiration, caused mitochondrial damage, and suppressed heme synthesis, thereby inhibiting erythroid differentiation. Clinical research results showed that oxoglutarate dehydrogenase (OGDH) protein expression levels were up-regulated in bone marrow cells of polycythemia vera (PV) patients. Treatment with CPI-613 significantly inhibited the excessive proliferation and differentiation of erythroid progenitor cells of the PV patients. These findings demonstrates the critical role of OGDC in normal erythroid development, suggesting that inhibiting its activity could be a novel therapeutic strategy for treating PV.
Animals
;
Humans
;
Mitochondria/metabolism*
;
Mice
;
Ketoglutarate Dehydrogenase Complex/physiology*
;
Cell Differentiation/drug effects*
;
Cells, Cultured
;
Erythropoiesis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Cell Proliferation/drug effects*
;
Erythroid Precursor Cells/cytology*
;
Apoptosis/drug effects*
;
Thioctic Acid/pharmacology*
;
Caprylates
;
Sulfides
9.Thoughts and practices on research and development of new traditional Chinese medicine drugs under "three combined" evaluation evidence system.
Yu-Qiao LU ; Yao LU ; Geng LI ; Tang-You MAO ; Ji-Hua GUO ; Yong ZHU ; Xue WANG ; Xiao-Xiao ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1994-2000
In recent years, the reform of the registration, evaluation, and approval system for traditional Chinese medicine(TCM) has been promoted at the national level, with establishment of an evaluation evidence system for TCM registration that combines TCM theory, human use experience, and clinical trials(known as the "three-combined" evaluation evidence system). This system, which aligns with the characteristics of TCM clinical practice and the laws of TCM research and development, recognizes the unique value of human use experience in medicine and returns to the essence of medicine as an applied science, thus receiving widespread recognition from both academia and industry. However, it meanwhile poses new and higher challenges. This article delves into the value and challenges faced by the "three-combined" evaluation evidence system from three perspectives: registration management, medical institutions, and the TCM industry. Furthermore, it discusses how the China Association of Chinese Medicine, leveraging its academic platform advantages and leading roles, has made exploratory and practical efforts to facilitate the research and development of new TCM drugs and the implementation of the "three-combined" evaluation evidence system.
Drugs, Chinese Herbal/standards*
;
Humans
;
Medicine, Chinese Traditional/standards*
;
China
;
Drug Development
10.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout

Result Analysis
Print
Save
E-mail