1.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
2.Ginkgo biloba extract alleviates oxygen and glucose deprivation/reperfusion injury in cardiac microvascular endothelial cells by regulating NF-κB and CHOP signaling pathways through SIRT6
Mukaddas ABDURAHMAN ; Zhenyang GUO ; Junbo GE ; Hua LI
Chinese Journal of Clinical Medicine 2025;32(1):46-57
Objective To explore the effects of Ginkgo biloba extract (GBE) on cardiac microvascular endothelial cells (CMECs) under oxygen and glucose deprivation/reperfusion (OGD/R) condition and its molecular mechanisms. Methods An OGD/R-induced injury model was established in CMECs. According to different intervention, CMECs were divided into four groups: normoxia blank control group (WT group), WT + GBE group, OGD/R group, and OGD/R + GBE group. Cell apoptosis was detected by flow cytometry technology in each group. The oxidative stress was examined by MitoSox staining. The migration abilities were measured by scratch assay. The expressions of PERK/eIF2α/CHOP, nuclear factor kappa B (NF-κB), and endothelial cell function markers were detected by Western blotting. Results Compared with the WT group, the endothelial cell apoptosis level in the OGD/R group significantly increased, with markedly aggravated cellular dysfunction. The expressions of p-NF-κB, vascular cell adhesion molecule-1 (VCAM-1), and intercellular cell adhesion molecule-1 (ICAM-1) were significantly upregulated (P<0.05), and the activation of the CHOP signaling pathway was notably enhanced (P<0.05). After intervention with GBE, endothelial cell apoptosis caused by OGD/R injury was significantly reduced, oxidative stress and inflammation levels were markedly downregulated, and the expression of p-NF-κB was considerably decreased (P<0.05), while the CHOP signaling pathway was notably inhibited (P<0.05). Furthermore, it was found that GBE could promote expression of SIRT6 to regulate the above molecules, thereby alleviating cardiac microvascular endothelial cell injury under OGD/R condition. On the contrary, when SIRT6 was knocked down, the protective effects were significantly reduced. Conclusions GBE improves endothelial cell dysfunction, endoplasmic reticulum stress, and endothelial cell apoptosis caused by OGD/R injury by promoting the expression of SIRT6 protein, thus regulating the NF-κB inflammatory pathway and CHOP signaling pathway.
3.Nucleic Acid-driven Protein Degradation: Frontiers of Lysosomal Targeted Degradation Technology
Han YIN ; Yu LI ; Yu-Chuan FAN ; Shuai GUO ; Yuan-Yu HUANG ; Yong LI ; Yu-Hua WENG
Progress in Biochemistry and Biophysics 2025;52(1):5-19
Distinct from the complementary inhibition mechanism through binding to the target with three-dimensional conformation of small molecule inhibitors, targeted protein degradation technology takes tremendous advantage of endogenous protein degradation pathway inside cells to degrade plenty of “undruggable” target proteins, which provides a novel route for the treatment of many serious diseases, mainly including proteolysis-targeting chimeras, lysosome-targeting chimeras, autophagy-targeting chimeras, antibody-based proteolysis-targeting chimeras, etc. Unlike proteolysis-targeting chimeras first found in 2001, which rely on ubiquitin-proteasome system to mainly degrade intracellular proteins of interest, lysosome-targeting chimeras identified in 2020, which was act as the fastly developing technology, utilize cellular lysosomal pathway through endocytosis mediated by lysosome-targeting receptor to degrade both extracellular and membrane proteins. As an emerging biomedical technology, nucleic acid-driven lysosome-targeting chimeras utilize nucleic acids as certain components of chimera molecule to replace with ligand to lysosome-targeting receptor or protein of interest, exhibiting broad application prospects and potential clinical value in disease treatment and drug development. This review mainly introduced present progress of nucleic acid-driven lysosome-targeting chimeras technology, including its basic composition, its advantages compared with antibody or glycopeptide-based lysosome-targeting chimeras, and focused on its chief application, in terms of the type of lysosome-targeting receptors. Most research about the development of nucleic acid-driven lysosome-targeting chimeras focused on those which utilized cation-independent mannose-6-phosphonate receptor as the lysosome-targeting receptor. Both mannose-6-phosphonate-modified glycopeptide and nucleic aptamer targeting cation-independent mannose-6-phosphonate receptor, even double-stranded DNA molecule moiety can be taken advantage as the ligand to lysosome-targeting receptor. The same as classical lysosome-targeting chimeras, asialoglycoprotein receptor can also be used for advance of nucleic acid-driven lysosome-targeting chimeras. Another new-found lysosome-targeting receptor, scavenger receptor, can bind dendritic DNA molecules to mediate cellular internalization of complex and lysosomal degradation of target protein, suggesting the successful application of scavenger receptor-mediated nucleic acid-driven lysosome-targeting chimeras. In addition, this review briefly overviewed the history of lysosome-targeting chimeras, including first-generation and second-generation lysosome-targeting chimeras through cation-independent mannose-6-phosphonate receptor-mediated and asialoglycoprotein receptor-mediated endocytosis respectively, so that a clear timeline can be presented for the advance of chimera technique. Meantime, current deficiency and challenge of lysosome-targeting chimeras was also mentioned to give some direction for deep progress of lysosome-targeting chimeras. Finally, according to faulty lysosomal degradation efficiency, more cellular mechanism where lysosome-targeting chimeras perform degradation of protein of interest need to be deeply explored. In view of current progress and direction of nucleic acid-driven lysosome-targeting chimeras, we discussed its current challenges and development direction in the future. Stability of natural nucleic acid molecule and optimized chimera construction have a great influence on the biological function of lysosome-targeting chimeras. Discovery of novel lysosome-targeting receptors and nucleic aptamer with higher affinity to the target will greatly facilitate profound advance of chimera technique. In summary, nucleic acid-driven lysosome-targeting chimeras have many superiorities, such as lower immunogenicity, expedient synthesis of chimera molecules and so on, in contrast to classical lysosome-targeting chimeras, making it more valuable. Also, the chimera technology provides new ideas and methods for biomedical research, drug development and clinical treatment, and can be used more widely through further research and optimization.
4.Analysis of abnormal individual dose monitoring results in 206 medical institutions in a selected region in 2024
Hua TUO ; Wenyan LI ; Lantao LIU ; Guiying ZHANG ; Zeqin GUO ; Heyan WU
Chinese Journal of Radiological Health 2025;34(4):471-476
Objective To analyze the abnormal individual dose monitoring results in 206 medical institutions in a selected region in 2024, and to propose improvement measures. Methods Individuals with monitoring results exceeding the investigation level were subjected to high-dose investigation, and the results were statistically analyzed. Results In 2024, the individual dose monitoring of 206 medical institutions in a selected region showed 1.04% abnormal results. The proportions of abnormal results from primary, secondary, and tertiary medical institutions were 12.22%, 3.33%, and 84.45%, respectively. In analysis of the causes of abnormal results, 52.53% of the cases were due to personal dosimeters left in the radiation workplace, and 20.20% were due to the confusion in wearing personal dosimeters inside and outside the lead apron. In analysis of the occupational distribution of the radiation workers with abnormal monitoring results, interventional radiology and diagnostic radiology accounted for 73.34% and 24.44%, respectively. Statistical analysis of the dose range showed that doses in the ranges of 1.25-2.0 mSv and 2.0-5.0 mSv accounted for 42.22% and 33.33%, respectively. In the report of abnormal monitoring results, the proportions of reporting notional dose and reporting measured results accounted for 88.89% and 11.11%, respectively. Among institutions with consecutive abnormal results, primary, secondary, and tertiary medical institutions accounted for 15.39%, 7.69%, and 76.92%, respectively. Conclusion The level of the hospital, occupational type, the perceived importance of the hospital to the management of radiation protection, and the perceived importance and compliance of the radiation workers with the individual dose monitoring are potential causes of abnormal results. It is recommended that employers should enhance radiation protection training for their radiation workers to ensure proper wearing and storage of dosimeters, and progressively improve the standardization and effectiveness of individual dose monitoring practice.
5.Effect of knockdown of ARHGAP30 on proliferation and apoptosis of Siha cells
Ya-Ting PENG ; Duan LIU ; Jie MENG ; Wen-Chao LI ; Hui-Qi LI ; Hua GUO ; Mei-Lan NIU ; Qiao-Hong QIN
Chinese Pharmacological Bulletin 2024;40(5):847-853
Aim To investigate the changes in the proliferation and apoptosis of Siha cells after knocking down Rho GTPase-activating protein 30(ARHGAP30).Methods After designing specific shARHGAP30 primers and connecting them to the pLKO.1 vector,we transformed them into Escherichia coli competent cells,then co-transfecting them with lentiviral helper plasmids into HEK-293T cells.We collected and filtered cell supernatant to obtain the vi-rus to infect Siha cells.RT-qPCR and Western blot were used to detect knockdown efficiency,as well as changes in the expression of Bax and Bcl-2 after trans-fection.The CCK-8 method was employed to measure the proliferation level of cells after knockdown.Results After successful construction of a lentiviral plasmid with knockdown of the ARHGAP30 gene and establish-ment of stably transfected Siha cells,ARHGAP30 tran-scription and translation(P<0.01)in Siha cells de-creased,Bax/Bcl-2 significantly decreased(P<0.01),indicating decreased apoptosis and increased cell proliferation(P<0.01).Conclusions This study suggests the involvement of ARHGAP30 in the proliferation and apoptosis of Siha cells,and regulating the ARHGAP30 gene may interfere with the occurrence and development of cervical cancer.
6.Quercetin alleviates podocyte injury by inhibiting inflammation and pyroptosis through SIRT1/STAT3/GSDME
Jie-Qiong WANG ; Ge LI ; Shao-Hua WANG ; Yu WAN ; Yun LIU ; Cong-Gai HUANG ; Qu-Lian GUO ; Fang-Fang ZHONG
Chinese Pharmacological Bulletin 2024;40(7):1279-1287
Aim To investigate the effect of quercetin(Que)on podocyte inflammatory injury and the under-lying mechanism.Methods MPC5 cells were divided into normal glucose group(NG),mannitol group(MA),high glucose group(HG)and high glucose+quercetin group(HG+Que).Cell proliferation and apoptosis were detected by CCK-8 and flow cytometry.The expression of SIRT1,STAT3,apoptosis-related proteins(Bax,Bcl-2,caspase-3)and pyroptosis pro-tein GSDME was detected by Western blot.The ex-pression levels of inflammatory factors(IL-6,TNF-α,IL-18,IL-1β)in cell supernatants were detected by ELISA.Then small interfering RNA technology was used to knockdown SIRT1 expression.To further eval-uate the biological significance of SIRT1 in response to high glucose and Que treatment,negative control group(HG+si-NC+Que)and SIRT1 interference group(HG+si-SIRT1+Que)were added in the presence of high glucose and Que.Results Compared with the high glucose group,40 μmol·L-1 Que could alleviate the apoptosis of MPC5 cells induced by high glucose,decrease the expression of apoptosis related protein Bax and caspase-3,as well as increase the expression of anti-apoptotic protein Bcl-2;ELISA results showed that Que could decrease the expression of TNF-α,IL-6,IL-1 β and IL-18 induced by high glucose.Mechanical-ly,Que could alleviate the inhibitory effect of high glu-cose on the expression of SIRT1,and further decrease the activation of STAT3 and N-GSDME,and inhibit pyroptosis.Compared with the si-NC group,si-SIRT1 group could reverse the protective effect of Que on the high glucose induced inflammatory damage of podo-cytes,the expression of apoptotic proteins Bax and caspase-3 increased,while the expression of anti-apop-totic protein Bcl-2 decreased.At the same time,the levels of inflammatory cytokines TNF-α,IL-6,IL-1 βand IL-18 in supernatants increased,and the expres-sion of STAT3 and N-GSDME increased.Conclusion Que could inhibit pyroptosis and relieve the inflam-matory damage of podocytes through SIRT1/STAT3/GSDME pathway.
7.LncRNA-CCRR regulates arrhythmia induced by myocardial infarction by affecting sodium channel ubiquitination via UBA6
Fei-Han SUN ; Dan-Ning LI ; Hua YANG ; Sheng-Jie WANG ; Hui-Shan LUO ; Jian-Jun GUO ; Li-Na XUAN ; Li-Hua SUN
Chinese Pharmacological Bulletin 2024;40(8):1437-1446
Aim To investigate the regulatory mecha-nism of arrhythmia of sodium channel ubiquitination af-ter MI and to study the electrophysiological remodeling mechanism of lncRNA-CCRR after MI for the preven-tion and treatment of arrhythmia after MI.Methods LncRNA-CCRR transgenic mice and C57BL/6 mice injected with lncRNA-CCRR overexpressed adeno-asso-ciated virus were used.Four weeks after infection,the left anterior descending branch of the coronary artery was ligated for 12 h to establish a mouse acute myocar-dial infarction model,and the incidence of arrhythmia was detected by programmed electrical stimulation.Ln-cRNA-CCRR overexpression/knockdown adeno-associ-ated virus and negative control were transfected into neonatal mouse cardiomyocytes(NMCMs),and the model was prepared by hypoxia for 12 h.LncRNA-CCRR expression was detected by FISH,Nav1.5 and UBA6 protein and Nav.1.5 mRNA expression were de-tected by Western blot and real-time quantitative poly-merase chain reaction(qRT-PCR),Nav1.5 and UBA6 expressions were detected by immunofluores-cence,and the relationship between lncRNA-CCRR and UBA6 was detected by RIP.INa current density af-ter CCRR overexpression and knockdown was detected by Whole-cell clamp patch.Results In MI mice,the expression of lncRNA-CCRR decreased,the incidence of arrhythmia increased,the expression of CCRR and Nav1.5 mRNA was down-regulated,the protein ex-pression of Nav1.5 was down-regulated,and the pro-tein expression of UBA6 was up-regulated compared with sham group.Overexpression of CCRR could re-verse the above changes.AAV-CCRR could reverse the down-regulated CCRR and Nav1.5 mRNA levels af-ter hypoxia,and improve the expression of Nav1.5 and UBA6 protein.The direct relationship between ln-cRNA-CCRR and UBA6 was identified by RIP analy-sis.The INa density increased after transfection with AAV-CCRR.The INa density decreased after transfec-tion with AAV-si-CCRR.Conclusions The expres-sion of lncRNA-CCRR decreases after MI,and ln-cRNA-CCRR can improve arrhythmia induced by MI by inhibiting UBA6 to increase the protein expression level of Nav1.5 and the density of INa.
8.Effect of Cigu Xiaozhi decoction on EGFR/PI3K/AKT signaling pathway in NASH's"inflammatory cancer"transformation based on network pharmacology and animal experiments
Lan-Lan ZHENG ; Li WANG ; Cai GUO ; Yan-Fang HE ; Jiao-Jiao XIE ; Yan-Hua MA
Chinese Pharmacological Bulletin 2024;40(8):1573-1582
Aim To study the main active ingredients,key targets and pathways of Cigu Xiaozhi Decoction(CXD)based on network pharmacology,and to ana-lyze and verify the mechanism of CXD on the transfor-mation of"inflammatory cancer"in non-alcoholic steatohepatitis(NASH)by animal experiments.Meth-ods The potential targets and signaling pathways of CXD in the treatment of NASH"inflammatory carcino-ma"were predicted based on network pharmacology.The mouse model of NASH was induced by methionine-choline deficiency diet(MCD),and CXD and epider-mal growth factor receptor(EGFR)inhibitors were given for 28 days.The mice were killed after the inter-vention,and the liver histopathology of each group was observed by hematoxylin-eosin method(HE).The rel-ative expression levels of EGFR,phosphatidylinositol 3-kinase(PI3K)and protein kinase B(AKT)in liver tissue of mice in each group were detected by Western blot.The contents of interleukin-6(IL-6),interleu-kin-1 β(IL-1β)and tumor necrosis factor-α(TNF-α)in serum were detected by enzyme-linked immunosor-bent assay(ELISA).Results A total of 284 poten-tial active components,159 potential therapeutic tar-gets and 20 key targets of CXD were identified by net-work pharmacological screening.CXD could affect multiple biological processes such as cell proliferation and inflammatory response,involving multiple signa-ling pathways such as tumor and PI3K/AKT.Animal experiments showed that CXD could reduce the levels of IL-6,IL-1β and TNF-α in serum of NASH mice.The relative expression of PI3K and AKT protein in liv-er tissue decreased,and the relative expression of EG-FR protein was increased.Conclusion CXD can reg-ulate EGFR/PI3K/AKT signaling pathway by partici-pating in biological processes such as cell proliferation and inflammatory response,and improve liver tissue injury in NASH mice.
9.Ricolinostat reduces X-ray induced myocardial fibrosis and drives disassembly of primary cilia
Cheng-Xu MA ; Xiao-Ni MA ; Li-Hua MA ; Song-Bo FU ; Jian-Guo CHENG
Chinese Pharmacological Bulletin 2024;40(10):1844-1849
Aim To evaluate the effect of ricolinostat on X-ray induced myocardial fibrosis and damage to primary cilia in myocardial fibroblasts.Methods Wistar rats were subjected to a single dose of 8 Gy whole-body irradiation,followed by intraperitoneal in-jection of ricolinostat.Serum troponinT(TnT)and brain natriuretic peptide(BNP)levels were measured using ELISA.The degree of myocardial tissue fibrosis was measured using HE and Masson staining.Type Ⅰcollagen and primary cilia were detected using immuno-fluorescence.The gene and protein levels of histone deacetylase 6(HDAC6)in myocardial tissue and cells were detected using PCR and Western blot.Results Compared with the control group,X-ray radiation in-creased type Ⅰ collagen content and promoted the pro-liferation of myocardial fibroblasts in rat myocardial tis-sue.X-ray radiation slightly up-regulated the expres-sion of HDAC6 in myocardial fibroblasts(P>0.05),and significantly increased the formation of primary cil-ia in myocardial tissue and myocardial fibroblasts.Af-ter treatment with ricolinostat,the expression of HDAC6 and primary cilia formation decreased in myo-cardial tissue and myocardial fibroblasts(P<0.05),and acetylation in the cytoplasm significantly in-creased.The arrangement of collagen fibers in myocar-dial tissue was slightly neat,collagen volume fraction was reduced,and the levels of TnT(P<0.01)and BNP decreased.Conclusions Ricolinostat can miti-gate X-ray induced myocardial fibrosis via the disas-sembly of primary cilia,with potential value for trea-ting radiation-induced myocardial fibrosis.
10.Meta-analysis of autologous bone grafts and bone substitute for the treatment of tibial plateau fractures
Hua GUO ; Ling-An HUANG ; Hao-Qian LI ; Li GUO ; Peng-Cui LI ; Xiao-Chun WEI
China Journal of Orthopaedics and Traumatology 2024;37(3):300-305
Objective To explore clinical efficacy of autologous bone grafts and bone substitute for the treatment of tibial plateau fractures by Meta analysis.Methods Controlled clinical studies on autogenous bone transplantation and bone substitutes in treating tibial plateau fractures published on PubMed,Web of Science,CNKI,Wanfang and other databases from January 2005 to August 2022 were searched by computer.Literature screening and data extraction were performed according to random-ized controlled trial(RCT),and the quality of RCT were evaluated by using intervention meta-analysis criteria in Cochrane man-ual.Meta-analysis of joint depression,secondary collapse rate of articular surface,blood loss,operative time and infection rate between two methods were performed by Rev Man 5.3 software.Results Seven RCT studies(424 patients)were included,296 patients in bone replacement group and 128 patients in autograft group.Operative time[MD=-16.79,95%CI(-25.72,-7.85),P=0.000 2]and blood loss[MD=-70.49,95%CI(-79.34,-61.65),P<0.000 01]between two groups had statistically differ-ences,while joint depression[MD=-0.17,95%CI(-0.91,0.58),P=0.66],secondary collapse rate of joint surface[RR=-0.74,95%CI(0.35,1.57),P=0.43],infection rate[RR=1.21,95%CI(0.31,4.70),P=0.78]between two groups had no differences.Conclusion The effects of bone substitute and autograft for the treatment of tibial plateau fracture have similar effects in terms of joint depression,secondary articular surface collapse rate and infection rate.However,compared with autologous bone trans-plantation,bone replacement could reduce blood loss and shorten operation time.

Result Analysis
Print
Save
E-mail