1.Erjingwan Alleviate Inflammatory Response and Apoptosis in Skeletal Muscle Cells of Sarcopenia via SIRT1/Nrf2/HO-1 Signaling Pathway
Long SHI ; Yang LI ; Hongyu YAN ; Tianle ZHOU ; Zhiwen ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):57-66
ObjectiveTo investigate the effects of the classical Chinese medicine compound prescription Erjingwan on the inflammatory response and apoptosis of skeletal muscle cells in a mouse model of sarcopenia and decipher the mechanism based on the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. MethodsForty C57/BL6 male mice were randomized into a control group, a model group, and groups with different doses of Erjingwan (8,16,32 g·kg-1). The mouse model of sarcopenia was established by D-gal-induced skeletal muscle senescence. The body weight and grip strength of mice treated with different doses of Erjingwan were examined to evaluate their physiological functions. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the pathological changes and fibrosis in the skeletal muscle of mice. Enzyme-linked immunosorbent assay (ELISA) was adopted to determine the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum samples of mice, and biochemical tests were conducted to quantify the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in the serum. The protein and mRNA levels of SIRT1, Nrf2, B-cell lymphoma (Bcl-2), and Bcl-2-associated X protein (Bax) were determined by Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), respectively. ResultsAfter 4 weeks of drug intervention, the model group exhibited significant reductions in body weight and grip strength (P0.01) compared with the control group. Compared with the model group, all doses of Erjingwan increased the body weight in mice at week 8 (P0.01) and grip strength from week 6 (P0.01). HE staining revealed clear muscle fiber structure in the control group, muscle fiber rupture and atrophy in the model group, and dose-dependent repair of muscle fiber structure in the Erjingwan groups. Masson staining showed minimal collagen fibers and mild fibrosis in the control group, collagen fiber proliferation and severe fibrosis in the model group, and collagen proliferation with dose-dependent inhibition of fibrosis in the Erjingwan groups. ELISA results showed that serum levels of TNF-α and IL-6 were elevated in the model group compared with those in the control group (P0.01). After intervention, the low-dose Erjingwan group exhibited a decreased TNF-α level (P0.05), while the medium and high-dose groups showed decreases in both TNF-α and IL-6 levels (P0.01). Biochemical assays revealed that the model group had decreased SOD and GSH levels (P0.01) and an increased MDA level (P0.01) compared with the control group. The medium and high-dose Erjingwan groups exhibited increases in SOD and GSH levels (P0.01) and decreases in MDA level (P0.01), compared with the model group. WB and Real-time PCR results showed that compared with the control group, the model group presented down-regulated protein and mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 in the muscle tissue (P0.01) and up-regulated protein and mRNA levels of Bax (P0.01). Compared with the model group, Erjingwan at different doses up-regulated the protein levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01) and down-regulated the protein and mRNA levels of Bax (P0.01) in the muscle tissue. Low-dose Erjingwan elevated the mRNA levels of Nrf2 and HO-1 (P0.05, P0.01), and medium and high-dose Erjingwan up-regulated the mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01). ConclusionErjingwan reduced the content of inflammatory factors in skeletal muscle cells, improved the antioxidant capacity, and attenuated pathological changes and fibrosis in the muscle of the mouse model of sarcopenia by regulating the SIRT1/Nrf2/HO-1 pathway, inflammatory response, and apoptosis network.
2.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
3.In Vitro and In Vivo Chemical Composition Analysis of Reference Sample of Jinshui Liujunjian Based on UPLC-Q-TOF-MS/MS
Xinyue YANG ; Huiyu LI ; Yaqi LOU ; Xingxing WANG ; Guifang YU ; Chenfeng ZHANG ; Zhenzhong WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):166-173
ObjectiveTo elucidate the chemical composition of the reference sample of Jinshui Liujunjian and its distribution characteristics in blood and tissues of rats. MethodsUltra performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was used to detect the reference sample solution, plasma, and tissue samples of Jinshui Liujunjian under positive and negative ion modes, respectively. Qualitative Analysis 10.0 software and a self-constructed database were employed for primary mass spectrum matching.Compound identification was further validated by comparing retention times, secondary mass spectral fragments, reference standards, and literature data to deduce fragmentation pathways. ResultsA total of 122 compounds were identified in the reference sample of Jinshui Liujunjian, including 47 flavonoids, 5 amino acids, 13 iridoids, 16 triterpenoid saponins, etc., of which 42 compounds were confirmed by comparison with reference substances. A total of 21 prototype components were identified in blood components; 50 prototype components were identified in different tissues, among which 13, 10, 7, 21, 11, 6, 14, and 40 prototype components were identified in the heart, liver, spleen, lung, kidney, brain, large intestine, and stomach, respectively. Among them, 7 compounds such as ferulic acid, glycyrrhizic acid, and nobiletin were exposed in the target organs of lung and kidney. ConclusionThis study elucidates the material basis of the reference samples of Jinshui Liujunjian, primarily composed of flavonoids and triterpenoid saponins, along with their in vivo distribution characteristics. These findings provide a scientific basis for establishing quality evaluation indicators and offer references for subsequent pharmacodynamic and pharmacokinetic investigations.
4.Analysis of Animal Models of Dry Age-related Macular Degeneration Based on Clinical Disease-syndrome Characteristics of Traditional Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Yun GAO ; Jiahao LI ; Jianying YANG ; Xiaoshan ZHANG ; Honghao BI ; Menglu MIAO ; Huiyi GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):191-197
ObjectiveAge-related macular degeneration (AMD) is one of the leading causes of low vision and blindness in people over 50 years old, and dry AMD (dAMD) is one type for which there is currently no clear treatment. On the basis of the diagnosis and clinical characteristics of dAMD in traditional Chinese and Western medicine, this paper evaluated the fitting degrees of existing animal models of dAMD with clinical characteristics according to the evaluation methods of animal models, and put forward suggestions and prospects. MethodsLiterature on animal models of dAMD was searched against database, and the characteristics of the models were assigned according to the diagnosis criteria of diseases and syndromes of traditional Chinese and Western medicine, and the fitting degrees of the models with clinical characteristics were analyzed and evaluated. ResultsAt present, the animal models of dAMD are mainly established targeting complement factors, chemokines, oxidative damage, lipid/glucose metabolism, and natural strains. Most of the models can simulate the major pathological changes of dAMD, showing the fitting degree of 25%-50% with clinical characteristics in Western medicine. However, the evaluation of traditional Chinese medicine (TCM) syndromes, especially the evaluation of secondary syndromes, is missing, and the models present low fitting degrees with the clinical characteristics in TCM. ConclusionExisting animal models of dAMD are mostly established under the guidance of Western diagnostic standards, which reproduce the main disease characteristics of Western medicine and lack observation of TCM syndromes. Future studies can pay attention to the intervention factors and evaluation systems of spleen deficiency Qi deficiency and liver-kidney Yin deficiency syndrome and build the animal model of dAMD with integration of disease and syndrome based on clinical characteristics of traditional Chinese and Western medicine.
5.Erjingwan Alleviate Inflammatory Response and Apoptosis in Skeletal Muscle Cells of Sarcopenia via SIRT1/Nrf2/HO-1 Signaling Pathway
Long SHI ; Yang LI ; Hongyu YAN ; Tianle ZHOU ; Zhiwen ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):57-66
ObjectiveTo investigate the effects of the classical Chinese medicine compound prescription Erjingwan on the inflammatory response and apoptosis of skeletal muscle cells in a mouse model of sarcopenia and decipher the mechanism based on the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. MethodsForty C57/BL6 male mice were randomized into a control group, a model group, and groups with different doses of Erjingwan (8,16,32 g·kg-1). The mouse model of sarcopenia was established by D-gal-induced skeletal muscle senescence. The body weight and grip strength of mice treated with different doses of Erjingwan were examined to evaluate their physiological functions. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the pathological changes and fibrosis in the skeletal muscle of mice. Enzyme-linked immunosorbent assay (ELISA) was adopted to determine the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum samples of mice, and biochemical tests were conducted to quantify the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in the serum. The protein and mRNA levels of SIRT1, Nrf2, B-cell lymphoma (Bcl-2), and Bcl-2-associated X protein (Bax) were determined by Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), respectively. ResultsAfter 4 weeks of drug intervention, the model group exhibited significant reductions in body weight and grip strength (P0.01) compared with the control group. Compared with the model group, all doses of Erjingwan increased the body weight in mice at week 8 (P0.01) and grip strength from week 6 (P0.01). HE staining revealed clear muscle fiber structure in the control group, muscle fiber rupture and atrophy in the model group, and dose-dependent repair of muscle fiber structure in the Erjingwan groups. Masson staining showed minimal collagen fibers and mild fibrosis in the control group, collagen fiber proliferation and severe fibrosis in the model group, and collagen proliferation with dose-dependent inhibition of fibrosis in the Erjingwan groups. ELISA results showed that serum levels of TNF-α and IL-6 were elevated in the model group compared with those in the control group (P0.01). After intervention, the low-dose Erjingwan group exhibited a decreased TNF-α level (P0.05), while the medium and high-dose groups showed decreases in both TNF-α and IL-6 levels (P0.01). Biochemical assays revealed that the model group had decreased SOD and GSH levels (P0.01) and an increased MDA level (P0.01) compared with the control group. The medium and high-dose Erjingwan groups exhibited increases in SOD and GSH levels (P0.01) and decreases in MDA level (P0.01), compared with the model group. WB and Real-time PCR results showed that compared with the control group, the model group presented down-regulated protein and mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 in the muscle tissue (P0.01) and up-regulated protein and mRNA levels of Bax (P0.01). Compared with the model group, Erjingwan at different doses up-regulated the protein levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01) and down-regulated the protein and mRNA levels of Bax (P0.01) in the muscle tissue. Low-dose Erjingwan elevated the mRNA levels of Nrf2 and HO-1 (P0.05, P0.01), and medium and high-dose Erjingwan up-regulated the mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01). ConclusionErjingwan reduced the content of inflammatory factors in skeletal muscle cells, improved the antioxidant capacity, and attenuated pathological changes and fibrosis in the muscle of the mouse model of sarcopenia by regulating the SIRT1/Nrf2/HO-1 pathway, inflammatory response, and apoptosis network.
6.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
7.In Vitro and In Vivo Chemical Composition Analysis of Reference Sample of Jinshui Liujunjian Based on UPLC-Q-TOF-MS/MS
Xinyue YANG ; Huiyu LI ; Yaqi LOU ; Xingxing WANG ; Guifang YU ; Chenfeng ZHANG ; Zhenzhong WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):166-173
ObjectiveTo elucidate the chemical composition of the reference sample of Jinshui Liujunjian and its distribution characteristics in blood and tissues of rats. MethodsUltra performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was used to detect the reference sample solution, plasma, and tissue samples of Jinshui Liujunjian under positive and negative ion modes, respectively. Qualitative Analysis 10.0 software and a self-constructed database were employed for primary mass spectrum matching.Compound identification was further validated by comparing retention times, secondary mass spectral fragments, reference standards, and literature data to deduce fragmentation pathways. ResultsA total of 122 compounds were identified in the reference sample of Jinshui Liujunjian, including 47 flavonoids, 5 amino acids, 13 iridoids, 16 triterpenoid saponins, etc., of which 42 compounds were confirmed by comparison with reference substances. A total of 21 prototype components were identified in blood components; 50 prototype components were identified in different tissues, among which 13, 10, 7, 21, 11, 6, 14, and 40 prototype components were identified in the heart, liver, spleen, lung, kidney, brain, large intestine, and stomach, respectively. Among them, 7 compounds such as ferulic acid, glycyrrhizic acid, and nobiletin were exposed in the target organs of lung and kidney. ConclusionThis study elucidates the material basis of the reference samples of Jinshui Liujunjian, primarily composed of flavonoids and triterpenoid saponins, along with their in vivo distribution characteristics. These findings provide a scientific basis for establishing quality evaluation indicators and offer references for subsequent pharmacodynamic and pharmacokinetic investigations.
8.Analysis of Animal Models of Dry Age-related Macular Degeneration Based on Clinical Disease-syndrome Characteristics of Traditional Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Yun GAO ; Jiahao LI ; Jianying YANG ; Xiaoshan ZHANG ; Honghao BI ; Menglu MIAO ; Huiyi GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):191-197
ObjectiveAge-related macular degeneration (AMD) is one of the leading causes of low vision and blindness in people over 50 years old, and dry AMD (dAMD) is one type for which there is currently no clear treatment. On the basis of the diagnosis and clinical characteristics of dAMD in traditional Chinese and Western medicine, this paper evaluated the fitting degrees of existing animal models of dAMD with clinical characteristics according to the evaluation methods of animal models, and put forward suggestions and prospects. MethodsLiterature on animal models of dAMD was searched against database, and the characteristics of the models were assigned according to the diagnosis criteria of diseases and syndromes of traditional Chinese and Western medicine, and the fitting degrees of the models with clinical characteristics were analyzed and evaluated. ResultsAt present, the animal models of dAMD are mainly established targeting complement factors, chemokines, oxidative damage, lipid/glucose metabolism, and natural strains. Most of the models can simulate the major pathological changes of dAMD, showing the fitting degree of 25%-50% with clinical characteristics in Western medicine. However, the evaluation of traditional Chinese medicine (TCM) syndromes, especially the evaluation of secondary syndromes, is missing, and the models present low fitting degrees with the clinical characteristics in TCM. ConclusionExisting animal models of dAMD are mostly established under the guidance of Western diagnostic standards, which reproduce the main disease characteristics of Western medicine and lack observation of TCM syndromes. Future studies can pay attention to the intervention factors and evaluation systems of spleen deficiency Qi deficiency and liver-kidney Yin deficiency syndrome and build the animal model of dAMD with integration of disease and syndrome based on clinical characteristics of traditional Chinese and Western medicine.
9.Research progress on the anti-nasopharyngeal carcinoma effect of traditional Chinese medicine based on MAPK signaling pathway
Yuanyuan LI ; Yang CAO ; Yuyin JIANG ; Xinyue ZHANG ; Jingbo LI
China Pharmacy 2026;37(1):117-123
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the mucosal epithelium of the nasopharynx. In recent years, its incidence and mortality rates have shown a continuous upward trend, and there is still a lack of therapeutic regimens with both favorable efficacy and safety in clinical practice. Mitogen-activated protein kinase (MAPK) signaling pathway plays a key regulatory role in biological processes such as cell proliferation, differentiation, apoptosis and invasion. It is widely involved in the occurrence and progression of NPC, and serves as an important target in the research field of anti-NPC therapy. This article systematically elaborates on the mechanism of action of the MAPK signaling pathway in NPC, and reviews the research status regarding the anti-NPC effect of active components of traditional Chinese medicine (TCM) and TCM compound prescriptions by regulating this signaling pathway. The results show that TCM active components, including flavonoids (luteolin, maackiain, baicalein, etc.), alkaloids (picrasidine Ⅰ, tetrandrine, etc.), terpenoids (bakuchiol, cantharidic acid), as well as traditional Chinese medicine compound formulas (such as Biyan jiedu capsules and Yiqi jiedu formula) can exert effects including inducing autophagy and apoptosis of NPC cells, promoting pyroptosis, reversing drug resistance, blocking epithelial-mesenchymal transition, weakening cell stemness and arresting cell cycle progression by regulating the MAPK signaling pathway, thereby inhibiting the occurrence and development of NPC through multiple pathways.
10.Effect of Wenshen Tongluo Zhitong formula on mouse H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell co-culture system
Shijie ZHOU ; Muzhe LI ; Li YUN ; Tianchi ZHANG ; Yuanyuan NIU ; Yihua ZHU ; Qinfeng ZHOU ; Yang GUO ; Yong MA ; Lining WANG
Chinese Journal of Tissue Engineering Research 2025;29(1):8-15
BACKGROUND:Bone relies on the close connection between blood vessels and bone cells to maintain its integrity.Bones are in a physiologically hypoxic environment.Therefore,the study of angiogenesis and osteogenesis in hypoxic environment is closer to the microenvironment in vivo. OBJECTIVE:To explore the influence of Wenshen Tongluo Zhitong(WSTLZT)formula on H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell co-culture system in hypoxia environment and its related mechanism. METHODS:Enzyme digestion method and flow sorting technique were used to isolate and identify H-type bone microvascular endothelial cells.Mouse bone marrow mesenchymal stem cells were isolated and obtained by bone marrow adhesion method.H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell hypoxic co-culture system was established using Transwell chamber and anoxic culture workstation.WSTLZT formula powder was used to intervene in each group at a mass concentration of 50 and 100 μg/mL.The angiogenic function of H-type bone microvascular endothelial cells in the co-culture system was evaluated by scratch migration test and tube formation test.The osteogenic differentiation ability of bone marrow mesenchymal stem cells in the co-cultured system was evaluated by alkaline phosphatase staining and alizarin red staining.The protein and mRNA expression changes of PDGF/PI3K/AKT signal axis related molecules in H-type bone microvascular endothelial cells in the co-cultured system were detected by Western Blotting and q-PCR,respectively. RESULTS AND CONCLUSION:(1)Compared with the normal oxygen group,the scratch mobility and new blood vessel length of H-type bone microvascular endothelial cells were significantly higher(P<0.05);the osteogenic differentiation capacity of bone marrow mesenchymal stem cells was higher(P<0.05);the expression of PDGF/PI3K/AKT axis-related molecular protein and mRNA increased(P<0.05)in the hypoxia group.(2)Compared with the hypoxia group,scratch mobility and new blood vessel length were significantly increased in the H-type bone microvascular endothelial cells(P<0.05);bone marrow mesenchymal stem cells had stronger osteogenic function(P<0.05);the expression of PDGF/PI3K/AKT axis-related molecular proteins and mRNA further increased(P<0.05)after treatment with different dose concentrations of WSTLZT formula.These findings conclude that H-type angiogenesis and osteogenesis under hypoxia may be related to the PDGF/PI3K/AKT signaling axis,and WSTLZT formula may promote H-type vasculo-dependent bone formation by activating the PDGF/PI3K/AKT signaling axis,thereby preventing and treating osteoporosis.

Result Analysis
Print
Save
E-mail