1.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
2.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
3.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
4.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
5.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
6.Establishment of tissue culture and rapid propagation system of Artemisia stolonifera.
Chu WANG ; Ya XU ; Yang XU ; Ye WANG ; Na-Na CHANG ; Lu-Qi HUANG ; Hui LI
China Journal of Chinese Materia Medica 2025;50(11):2994-3000
As a high-quality moxibustion material, Artemisia stolonifera has high economic value and research prospects. However, due to difficulties in seed germination, its wild germplasm resources are sparsely distributed in China. This study used young stem segments grown in the current year to investigate the effects of explant sterilization, different combinations and concentrations of plant growth regulators on the proliferation and rooting of adventitious shoots, with the aim of constructing an in vitro rapid propagation technology system for A. stolonifera. The results showed that the lowest contamination rate of 25.83% was achieved when sterilizing the stem segments by rinsing with running water for 30 min, soaking in 75% ethanol for 30 s, followed by a 5 min treatment with 0.1% HgCl_2, 10 min with 8% NaClO, and 10 min with 0.6% phytosaniline. There was no browning of the stem segments, and surface sterilization of the A. stolonifera stem segments was successfully achieved. In the induction culture phase, when the concentration of kinetin(KT) was 0.05 mg·L~(-1) and 6-benzylaminopurine(6-BA) was 0.05 mg·L~(-1), the adventitious shoot proliferation coefficient was 2.02, effectively promoting the proliferation and growth of A. stolonifera. In the rooting culture phase, 0.1 mg·L~(-1) 1-naphthaleneacetic acid(NAA) effectively induced A. stolonifera test-tube seedlings to root within a short period, achieving a rooting rate of 100%. The addition of a small amount of activated charcoal also promoted rooting and strengthened seedling growth. The survival rate of A. stolonifera seedlings transplanted into a substrate consisting of 90% nutrient soil and 10% perlite was 100%. This study established an efficient in vitro rapid propagation system for A. stolonifera, overcoming difficulties with seed germination, shortening the breeding cycle, and reducing production and planting costs. It provides technical support for the introduction, domestication, seedling propagation, germplasm conservation, and industrial development of A. stolonifera.
Artemisia/drug effects*
;
Tissue Culture Techniques/methods*
;
Plant Growth Regulators/pharmacology*
;
Plant Stems/drug effects*
;
Plant Shoots/drug effects*
7.The Valvular Heart Disease-specific Age-adjusted Comorbidity Index (VHD-ACI) score in patients with moderate or severe valvular heart disease.
Mu-Rong XIE ; Bin ZHANG ; Yun-Qing YE ; Zhe LI ; Qing-Rong LIU ; Zhen-Yan ZHAO ; Jun-Xing LV ; De-Jing FENG ; Qing-Hao ZHAO ; Hai-Tong ZHANG ; Zhen-Ya DUAN ; Bin-Cheng WANG ; Shuai GUO ; Yan-Yan ZHAO ; Run-Lin GAO ; Hai-Yan XU ; Yong-Jian WU
Journal of Geriatric Cardiology 2025;22(9):759-774
BACKGROUND:
Based on the China-VHD database, this study sought to develop and validate a Valvular Heart Disease- specific Age-adjusted Comorbidity Index (VHD-ACI) for predicting mortality risk in patients with VHD.
METHODS & RESULTS:
The China-VHD study was a nationwide, multi-centre multi-centre cohort study enrolling 13,917 patients with moderate or severe VHD across 46 medical centres in China between April-June 2018. After excluding cases with missing key variables, 11,459 patients were retained for final analysis. The primary endpoint was 2-year all-cause mortality, with 941 deaths (10.0%) observed during follow-up. The VHD-ACI was derived after identifying 13 independent mortality predictors: cardiomyopathy, myocardial infarction, chronic obstructive pulmonary disease, pulmonary artery hypertension, low body weight, anaemia, hypoalbuminaemia, renal insufficiency, moderate/severe hepatic dysfunction, heart failure, cancer, NYHA functional class and age. The index exhibited good discrimination (AUC, 0.79) and calibration (Brier score, 0.062) in the total cohort, outperforming both EuroSCORE II and ACCI (P < 0.001 for comparison). Internal validation through 100 bootstrap iterations yielded a C statistic of 0.694 (95% CI: 0.665-0.723) for 2-year mortality prediction. VHD-ACI scores, as a continuous variable (VHD-ACI score: adjusted HR (95% CI): 1.263 (1.245-1.282), P < 0.001) or categorized using thresholds determined by the Yoden index (VHD-ACI ≥ 9 vs. < 9, adjusted HR (95% CI): 6.216 (5.378-7.184), P < 0.001), were independently associated with mortality. The prognostic performance remained consistent across all VHD subtypes (aortic stenosis, aortic regurgitation, mitral stenosis, mitral regurgitation, tricuspid valve disease, mixed aortic/mitral valve disease and multiple VHD), and clinical subgroups stratified by therapeutic strategy, LVEF status (preserved vs. reduced), disease severity and etiology.
CONCLUSION
The VHD-ACI is a simple 13-comorbidity algorithm for the prediction of mortality in VHD patients and providing a simple and rapid tool for risk stratification.
8.Waist Circumference Status and Distribution in Chinese Adults: China Nutrition and Health Surveillance (2015-2017).
Jing NAN ; Mu Lei CHEN ; Hong Tao YUAN ; Qiu Ye CAO ; Dong Mei YU ; Wei PIAO ; Fu Sheng LI ; Yu Xiang YANG ; Li Yun ZHAO ; Shu Ya CAI
Biomedical and Environmental Sciences 2025;38(6):757-762
9.Independent and Interactive Effects of Air Pollutants, Meteorological Factors, and Green Space on Tuberculosis Incidence in Shanghai.
Qi YE ; Jing CHEN ; Ya Ting JI ; Xiao Yu LU ; Jia le DENG ; Nan LI ; Wei WEI ; Ren Jie HOU ; Zhi Yuan LI ; Jian Bang XIANG ; Xu GAO ; Xin SHEN ; Chong Guang YANG
Biomedical and Environmental Sciences 2025;38(7):792-809
OBJECTIVE:
To assess the independent and combined effects of air pollutants, meteorological factors, and greenspace exposure on new tuberculosis (TB) cases.
METHODS:
TB case data from Shanghai (2013-2018) were obtained from the Shanghai Center for Disease Control and Prevention. Environmental data on air pollutants, meteorological variables, and greenspace exposure were obtained from the National Tibetan Plateau Data Center. We employed a distributed-lag nonlinear model to assess the effects of these environmental factors on TB cases.
RESULTS:
Increased TB risk was linked to PM 2.5, PM 10, and rainfall, whereas NO 2, SO 2, and air pressure were associated with a reduced risk. Specifically, the strongest cumulative effects occurred at various lags: PM 2.5 ( RR = 1.166, 95% CI: 1.026-1.325) at 0-19 weeks; PM 10 ( RR = 1.167, 95% CI: 1.028-1.324) at 0-18 weeks; NO 2 ( RR = 0.968, 95% CI: 0.938-0.999) at 0-1 weeks; SO 2 ( RR = 0.945, 95% CI: 0.894-0.999) at 0-2 weeks; air pressure ( RR = 0.604, 95% CI: 0.447-0.816) at 0-8 weeks; and rainfall ( RR = 1.404, 95% CI: 1.076-1.833) at 0-22 weeks. Green space exposure did not significantly impact TB cases. Additionally, low temperatures amplified the effect of PM 2.5 on TB.
CONCLUSION
Exposure to PM 2.5, PM 10, and rainfall increased the risk of TB, highlighting the need to address air pollutants for the prevention of TB in Shanghai.
China/epidemiology*
;
Humans
;
Air Pollutants/analysis*
;
Tuberculosis/epidemiology*
;
Incidence
;
Meteorological Concepts
;
Particulate Matter/adverse effects*
;
Environmental Exposure
;
Male
;
Female
;
Adult
;
Air Pollution
;
Middle Aged
10.Silencing MARK4 inhibits apoptosis and inflammatory factor expression of in ulcerative colitis via NF-κB signaling pathway
Lu YE ; Shengtao LIAO ; Chuanfei LI ; Jianlin SU ; Xinglian YU ; Yanhui WANG ; Ya SONG ; Lin LYU
Immunological Journal 2024;40(2):131-137
This study was designed to investigate the effect of silencing microtubule-affinity regulating kinase 4(MARK4)on the apoptosis,inflammatory cytokine release and intestinal barrier protein expression of FHC cells in a lipopolysaccharide(LPS)-induced ulcerative colitis(UC)model,and the underlying molecular mechanisms.Western blot analysis was used to measure the expression levels of MARK4 and apoptosis-related factors including Caspase-1,NLRP3,and GSDMD in colon tissues from both UC patients and healthy individuals,as well as in LPS-induced FHC cell inflammation model.FHC cells was transfected with shRNA to silence MARK4.In control(normal FHC cells),LPS(LPS-stimulated FHC cells),and MARK4-silenced+LPS(shRNA-and LPS-treated FHC cells)groups,the expression levels of Caspase-1,NLRP3,GSDMD,intestinal barrier proteins,and NF-κB pathway-related proteins were assessed by Western blotting.ELISA and RT-qPCR were used to measure the expression levels of inflammatory cytokines IL-1β,IL-6,and TNF-α;flow cytometry was utilized to assess apoptosis.Data showed that both in UC patient colon tissues and the in vitro LPS-induced FHC cell UC inflammation model,there was a significant increase in the expression of MARK4 and apoptosis-related proteins including NLRP3,Caspase-1,and GSDMD.Silencing MARK4 inhibited the expression of these apoptosis-related proteins and downregulated the inflammatory cytokines IL-1β,IL-6,and TNF-α in LPS-induced FHC cells.Silencing MARK4 also reduced apoptosis,increased the expression of intestinal barrier proteins ZO-1,Occludin,and upregulated Claudin2.Gene Set Enrichment Analysis(GSEA)indicated a positive correlation between MARK4 and the NF-κB signaling pathway.Furthermore,silencing of MARK4 inhibited the expression levels of p-P65 and p-IKKα in the NF-κB pathway.In conclusion,MARK4 is significantly upregulated in UC tissues and cells.Silencing MARK4 inhibits the activation of the NF-κB signaling pathway,thereby inhibiting the apoptosis and inflammatory factor expression of UC cells.Thus,MARK4 could be a potential therapeutic target for UC patients.

Result Analysis
Print
Save
E-mail