1.Correlation between brain white matter lesions and insulin resistance in non-diabetic elderly individuals based on magnetic resonance imaging
Mei LI ; Fang YUAN ; Xizi XING ; Feng XIE ; Hua ZHANG
Chinese Journal of Radiological Health 2025;34(1):96-101
Objective To investigate the relationship between brain white matter lesions (WML) and triglyceride glucose (TyG) index in non-diabetic elderly individuals based on magnetic resonance imaging. Methods A total of 523 non-diabetic elderly individuals aged ≥ 60 years were selected from Jinan, Shandong Province, China from June 2018 to December 2019. According to the quartiles of TyG index, there were 133 participants in the first quartile (Q1) group, 127 in the second quartile (Q2) group, 132 in the third quartile (Q3) group, and 131 in the fourth quartile (Q4) group. All participants underwent brain magnetic resonance imaging to evaluate paraventricular, deep, and total WML volumes, as well as Fazekas scores. Results Compared with Q1, Q2, and Q3 groups, Q4 group showed significant increase in periventricular, deep, and total WML volumes (P < 0.05). The proportion of participants with a Fazekas score ≥ 2 in the periventricular, deep, and total WML was higher in the Q4 group compared with the Q1 and Q2 groups (P < 0.05). The proportion of participants with a Fazekas score ≥ 2 in deep WML was higher in Q4 group than in Q3 group (P < 0.05). TyG index was significantly positively correlated with periventricular, deep, and total WML volumes (r = 0.401, 0.405, and 0.445, P < 0.001). After adjusting for confounding factors, TyG index was still significantly positively correlated with periventricular, deep, and total WML volumes (P < 0.001). Logistic regression analysis showed that compared with Q1 group, the risk of Fazekas score ≥ 2 in periventricular WML was 1.950-fold (95% confidence interval [CI]: 1.154-3.294, P = 0.013) in Q3 group and 3.411-fold (95% CI: 1.984-5.863, P < 0.001) in Q4 group, the risk of Fazekas score ≥ 2 in total WML was 2.529-fold (95%CI: 1.444-4.430, P = 0.001) in Q3 group and 4.486-fold (95%CI: 2.314-8.696, P < 0.001) in Q4 group. The risk of Fazekas score ≥ 2 in deep WML was 2.953-fold (95%CI: 1.708-5.106, P < 0.001) in Q4 group compared with Q1 group. Conclusion Increased TyG index is an independent risk factor for WML in non-diabetic elderly individuals.
2.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
3.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
4.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
5.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
6.Identification of chemical components and determination of vitexin in the raw powder of Tongluo Shenggu capsule
Gelin WU ; Ruixin FAN ; Chuling LIANG ; Leng XING ; Yongjian XIE ; Ping GONG ; Peng ZHOU ; BO LI
Journal of China Pharmaceutical University 2025;56(2):166-175
The present study employed UPLC-MS/MS to analyze and identify compounds in the raw powder of Tongluo Shenggu capsules. An HPLC method for the determination of vitexin content was established. The analysis of this drug was performed on a 30 ℃ thermostatic Acquity UPLC® BEH C18 (2.1 mm×100 mm,1.7 μm) column, with the mobile phase comprising 0.2% formic acid-methanol flowing at 0.3 mL /min in a gradient elution manner. Mass spectrometry was detected by ESI sources in both positive and negative ion modes for qualitative identification of chemical constituents. 12 flavonoid and 3 stilbenes compounds in the raw powder of Tongluo Shenggu capsules were successfully identified. Additionally, an HPLC method for the determination of vitexin content was established using a XBridge C18 column (4.6 mm × 250 mm, 5 µm) with a mobile phase of 0.05% glacial acetic acid in methanol for gradient elution, at a column temperature of 30 °C, a flow rate of 1.0 mL/min, and an injection volume of 20 μL. The method demonstrated good linearity in the concentration range of 10 µg/mL to 40 µg/mL (R=1.000) with an average recovery rate of 96.7%. The establishment of these methods provides a scientific basis for the quality control and development of the raw powder of Tongluo Shenggu capsules.
7.The Mesencephalic Locomotor Region for Locomotion Control
Xing-Chen GUO ; Yan XIE ; Xin-Shuo WEI ; Wen-Fen LI ; Ying-Yu SUN
Progress in Biochemistry and Biophysics 2025;52(7):1804-1816
Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR’s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats.
8.Concordance and pathogenicity of copy number variants detected by non-invasive prenatal screening in 38,611 pregnant women without fetal structural abnormalities.
Yunyun LIU ; Jing WANG ; Ling WANG ; Lin CHEN ; Dan XIE ; Li WANG ; Sha LIU ; Jianlong LIU ; Ting BAI ; Xiaosha JING ; Cechuan DENG ; Tianyu XIA ; Jing CHENG ; Lingling XING ; Xiang WEI ; Yuan LUO ; Quanfang ZHOU ; Ling LIU ; Qian ZHU ; Hongqian LIU
Chinese Medical Journal 2025;138(4):499-501
9.Prediction of testicular histology in azoospermia patients through deep learning-enabled two-dimensional grayscale ultrasound.
Jia-Ying HU ; Zhen-Zhe LIN ; Li DING ; Zhi-Xing ZHANG ; Wan-Ling HUANG ; Sha-Sha HUANG ; Bin LI ; Xiao-Yan XIE ; Ming-De LU ; Chun-Hua DENG ; Hao-Tian LIN ; Yong GAO ; Zhu WANG
Asian Journal of Andrology 2025;27(2):254-260
Testicular histology based on testicular biopsy is an important factor for determining appropriate testicular sperm extraction surgery and predicting sperm retrieval outcomes in patients with azoospermia. Therefore, we developed a deep learning (DL) model to establish the associations between testicular grayscale ultrasound images and testicular histology. We retrospectively included two-dimensional testicular grayscale ultrasound from patients with azoospermia (353 men with 4357 images between July 2017 and December 2021 in The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China) to develop a DL model. We obtained testicular histology during conventional testicular sperm extraction. Our DL model was trained based on ultrasound images or fusion data (ultrasound images fused with the corresponding testicular volume) to distinguish spermatozoa presence in pathology (SPP) and spermatozoa absence in pathology (SAP) and to classify maturation arrest (MA) and Sertoli cell-only syndrome (SCOS) in patients with SAP. Areas under the receiver operating characteristic curve (AUCs), accuracy, sensitivity, and specificity were used to analyze model performance. DL based on images achieved an AUC of 0.922 (95% confidence interval [CI]: 0.908-0.935), a sensitivity of 80.9%, a specificity of 84.6%, and an accuracy of 83.5% in predicting SPP (including normal spermatogenesis and hypospermatogenesis) and SAP (including MA and SCOS). In the identification of SCOS and MA, DL on fusion data yielded better diagnostic performance with an AUC of 0.979 (95% CI: 0.969-0.989), a sensitivity of 89.7%, a specificity of 97.1%, and an accuracy of 92.1%. Our study provides a noninvasive method to predict testicular histology for patients with azoospermia, which would avoid unnecessary testicular biopsy.
Humans
;
Male
;
Azoospermia/diagnostic imaging*
;
Deep Learning
;
Testis/pathology*
;
Retrospective Studies
;
Adult
;
Ultrasonography/methods*
;
Sperm Retrieval
;
Sertoli Cell-Only Syndrome/diagnostic imaging*
10.Curative Efficacy Analysis of Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia with ASXL1 Mutation.
Ya-Jie SHI ; Xin-Sheng XIE ; Zhong-Xing JIANG ; Ding-Ming WAN ; Rong GUO ; Tao LI ; Xia ZHANG ; Xue LI ; Yu-Pei ZHANG ; Yue SU
Journal of Experimental Hematology 2025;33(3):720-725
OBJECTIVE:
To explore the efficacy and apoptosis of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the treatment of acute myeloid leukemia (AML) with ASXL1 mutation.
METHODS:
The clinical data of 80 AML patients with ASXL1 mutation treated in our hospital from January 2019 to December 2021 were retrospectively analyzed. The clinical characteristics of the patients were summarized, and the therapeutic effect and prognostic factors of allo-HSCT for the patients were analyzed.
RESULTS:
Among the 80 patients, 38 were males and 42 were females, and the median age was 39(14-65) years. There were 17 patients in low-risk group, 25 patients in medium-risk group and 38 patients in high-risk group. ASXL1 mutation co-occurred with many other gene mutations, and the frequent mutated genes were TET2 (71.25%), NRAS (18.75%), DNMT3A (16.25%), NPM1 (15.00%), CEBPA (13.75%). Among medium and high-risk patients, 29 underwent allo-HSCT, while 34 received chemotherapy. The 2-year overall survival (OS) rate and disease-free survival (DFS) rate of the allo-HSCT group were 72.4% and 70.2%, while those of the chemotherapy group were 44.1% and 34.0%, respectively. The statistical analysis showed significant differences between the two groups (both P < 0.01). Multivariate analysis showed that age at transplantation >50- years and occurrence of acute graft-versus-host disease after transplantation were poor prognostic factors for OS and DFS in transplantation patients.
CONCLUSION
Allo-HSCT can improve the prognosis of AML patients with ASXL1 mutation.
Humans
;
Leukemia, Myeloid, Acute/therapy*
;
Hematopoietic Stem Cell Transplantation
;
Female
;
Male
;
Middle Aged
;
Mutation
;
Adult
;
Repressor Proteins/genetics*
;
Adolescent
;
Retrospective Studies
;
Aged
;
Nucleophosmin
;
Young Adult
;
Transplantation, Homologous
;
Prognosis
;
Survival Rate

Result Analysis
Print
Save
E-mail