1.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
2.Comprehensive Application of AHP-CRITIC Hybrid Weighting Method, Grey Correlation Analysis and BP-ANN in Optimization of Extraction Process of Qizhi Prescription
Qun LAN ; Yi CHENG ; Zian LI ; Bingyu WU ; Jinyu WANG ; Dewen LIU ; Yan TONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):176-186
ObjectiveBased on analytic hierarchy process(AHP)-criteria importance through intercriteria correlation(CRITIC) hybrid weighting method, grey relational analysis and backpropagation artificial neural network(BP-ANN), to optimize the water extraction process of Qizhi prescription, so as to provide an experimental basis for optimization of the preparation process of this prescription and the establishment of quality standards. MethodsL9(34) orthogonal test was employed, and the AHP-CRITIC hybrid weighting method was utilized to determine the weight coefficients of the quality fractions of various components, including astragaloside Ⅳ, polygalaxanthone Ⅲ, calycosin-7-O-β-D-glucoside, tenuifolin, and 3,6′-disinapoylsucrose, as well as the dry extract yield. The comprehensive score of each factor level combination in the orthogonal test were calculated as evaluation indicator to select the optimal extraction process parameters. The effects of extraction times, extraction time, and solvent dosage on the aqueous extraction process of the formula were investigated through intuitive analysis, variance analysis, and grey relational analysis. Meanwhile, a BP-ANN model was established to reverse-predict the optimal extraction process parameters of Qizhi prescription, and the optimized process parameters were validated. ResultsThe weight coefficients of the five index components(astragaloside Ⅳ, tenuifolin, calycosin-7-O-β-D-glucoside, polygalaxanthone Ⅲ, and 3,6′-disinapoylsucrose) and dry extract yield were 25.7%, 20.82%, 16.41%, 12.45%, 15.96% and 8.67%, respectively. The optimized extraction process parameters were extracted 3 times with 8, 6, 6 times the amount of water, each time for 1 h. The network prediction results of BP-ANN test samples were consistent with the orthogonal test results, and the mean square error(MSE) of the predicted and measured values of the network was <1%. The water extraction process of Qizhi prescription analyzed and predicted by relevant mathematical models was stable and feasible, which could effectively improve the extraction efficiency of the active ingredients of Astragali Radix and Polygalae Radix, and the average comprehensive score of the validation test was 90.85 with the relative standard deviation(RSD) of 1.55%. ConclusionThis study establishes a water extraction process for compound Qizhi granules, and the optimized extraction process can effectively improve the extraction efficiency of active ingredients, which provides useful references for the optimization of preparation process and the establishment of quality standards for other clinical experience formulas.
3.Research progress on the structural modification of isosteviol and the biological activities of its derivatives
Li-jun ZHAO ; You-fu YANG ; Tong-sheng WANG ; Yan-li ZHANG ; Ya WU
Acta Pharmaceutica Sinica 2025;60(1):22-36
Isosteviol is a tetracyclic diterpenoid compound obtained by hydrolysis of natural stevia glycoside under acidic conditions. It has many pharmacological activities, such as anti-tumor, hypoglycemic, anti-inflammatory and antibacterial. Due to its low water solubility, low activity and low bioavailability, isosteviol has poor performance. In order to overcome these shortcomings, scholars have obtained a large number of isosteviol derivatives with novel structures and excellent activity. In this paper, we review the recent progress in the research on the structure modification, biological activity, structure-activity relationship and microbial transformation of isosteviol, in order to provide a reference for the development of new drugs of isosteviol and its derivatives.
4.Association analyses of early medication clocking-in trajectory with smart tools and treatment outcome in pulmonary tuberculosis patients
Chunhua XU ; Zheyuan WU ; Yong WU ; Qing WANG ; Zichun WANG ; Nan QIN ; Xinru LI ; Yucong YAO ; Kehua YI ; Yi HU
Shanghai Journal of Preventive Medicine 2025;37(3):210-214
ObjectiveTo construct a group-based trajectory model (GBTM) for early medication adherence check-in, and to analyze the relationship between different trajectories and treatment outcomes in tuberculosis patients using data that were generated from smart tools for monitoring their medication adherence and check-in. MethodsFrom October 1, 2022 to September 30, 2023, a total of 163 pulmonary tuberculosis patients diagnosed in Fengxian District were selected as the study subjects. The GBTM was utilized to analyze the weekly active check-in trajectories of the subjects during the first 4 weeks and establish different trajectory groups. The χ² tests were employed to compare the differences between groups and logistic regression analysis was conducted to explore the relationship between different trajectory groups and treatment outcomes. ResultsA total of four groups were generated by GBTM analyses, of which a low level of punch card was maintained in group A, 6% of the drug users increased rapidly from a low level in group B, 17% of drug users increased gradually from a low level in group C, and 18% of drug users maintained a high level of punch card in group D. The trajectory group was divided into two groups according to homogeneity, namely the low level medication punch card group (group A) and the high level medication punch card group (group B, group C, and group D). The results of multivariate logistic regression analyses revealed that low-level medication check-in (OR=3.250, 95%CI: 1.089‒9.696), increasing age (OR=1.030, 95%CI: 1.004‒1.056), and not undergoing sputum examination at the end of the fifth month (OR=2.746, 95%CI: 1.090‒7.009) were significantly associated with poor treatment outcomes. ConclusionThe medication check-in trajectory of pulmonary tuberculosis patients within the first 4 weeks is correlated with adverse outcomes, or namely consistent low-level medication adherence check-ins are associated with poor treatment outcomes, while high-level medication adherence check-ins are associated with a lower incidence of adverse outcomes.
5.Research on a COPD Diagnosis Method Based on Electrical Impedance Tomography Imaging
Fang LI ; Bai CHEN ; Yang WU ; Kai LIU ; Tong ZHOU ; Jia-Feng YAO
Progress in Biochemistry and Biophysics 2025;52(7):1866-1877
ObjectiveThis paper proposes a novel real-time bedside pulmonary ventilation monitoring method for the diagnosis of chronic obstructive pulmonary disease (COPD), based on electrical impedance tomography (EIT). Four indicators—center of ventilation (CoV), global inhomogeneity index (GI), regional ventilation delay inhomogeneity (RVDI), and the ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC)—are calculated to enable the spatiotemporal assessment of COPD. MethodsA simulation of the respiratory cycles of COPD patients was first conducted, revealing significant differences in certain indicators compared to healthy individuals. The effectiveness of these indicators was then validated through experiments. A total of 93 subjects underwent multiple pulmonary function tests (PFTs) alongside simultaneous EIT measurements. Ventilation heterogeneity under different breathing patterns—including forced exhalation, forced inhalation, and quiet tidal breathing—was compared. EIT images and related indicators were analyzed to distinguish healthy individuals across different age groups from COPD patients. ResultsSimulation results demonstrated significant differences in CoV, GI, FEV1/FVC, and RVDI between COPD patients and healthy individuals. Experimental findings indicated that, in terms of spatial heterogeneity, the GI values of COPD patients were significantly higher than those of the other two groups, while no significant differences were observed among healthy individuals. Regarding temporal heterogeneity, COPD patients exhibited significantly higher RVDI values than the other groups during both quiet breathing and forced inhalation. Moreover, during forced exhalation, the distribution of FEV1/FVC values further highlighted the temporal delay heterogeneity of regional lung function in COPD patients, distinguishing them from healthy individuals of various ages. ConclusionEIT technology effectively reveals the spatiotemporal heterogeneity of regional lung function, which holds great promise for the diagnosis and management of COPD.
6.Roles of A- and C-weighted kurtosis adjustment for equivalent sound level in evaluating occupational hearing loss
Haiying LIU ; Linjie WU ; Yang LI ; Jinzhe LI ; Jiarui XIN ; Hua ZOU ; Wei QIU ; Tong SHEN ; Meibian ZHANG
Journal of Environmental and Occupational Medicine 2025;42(7):793-799
Background Temporal kurtosis (without frequency weighting, i.e., Z-weighted kurtosis) can evaluate noise-induced hearing loss (NIHL). However, few studies have considered the function of frequency weighting (A- or C-weighted) kurtosis on NIHL. Objective To study the significance of A- and C-weighted kurtosis adjustment for equivalent sound level (L'EX,8 h) in evaluating occupational hearing loss. Methods A cross-sectional survey was used to select 973 noise-exposed workers in seven industries as the subjects. The noise exposure of all workers was assessed by distributions of A-, C-, and Z-weighted kurtosis (e.g., KA, KC, and KZ) and respective adjusted equivalent sound level (e.g., L'EX,8 h-KA, L'EX,8 h-KC, and L'EX,8 h-KZ). The significance of A- and C-weighted kurtosis in evaluating NIHL was evaluated by correlations between three types of L'EX,8 h and NIHL, and improvement of noise-induced permanent threshold shift (NIPTS) underestimation predicted by the ISO prediction model (Acoustics—Estimation of noise-induced hearing loss, ISO 1999-2013). Results The median KA, KC, and KZ were 68.33, 28.22, and 19.82, respectively. The binary logistic regression showed that LEX, 8 h-KA, LEX, 8 h-KC, and L'EX, 8 h-KZ were risk factors for NIHL (OR>1, P<0.001). The receiver operating characteristic (ROC) curve showed that when the outcome variable was noise-induced hearing impairment (NIHI), the areas under the curves corresponding to L'EX,8 h-KA, L'EX,8 h-KC, and L'EX,8 h-KZ were 0.625, 0.628, and 0.625, respectively. When the outcome variable was high-frequency noise-induced hearing loss (HFNIHL), the areas under the curves corresponding to L'EX,8 h-KA, L'EX, 8 h-KC, and L'EX,8 h-KZ were 0.624, 0.623, and 0.622, respectively (P<0.05). The order of underestimation improvement values predicted by L'EX,8 h for NIPTS1234 was: L'EX,8 h-KA (4.68 dB HL)>L'EX,8 h-KC (4.38 dB HL)>L'EX,8 h-KZ (4.28 dB HL) (P<0.001). The order of underestimation improvement values predicted by L'EX,8 h-K for NIPTS346 was: L'EX,8 h-KA (7.20 dB HL)>L'EX,8 h-KC (6.83 dB HL)>L'EX,8 h-KZ (6.71 dB HL) (P<0.001). Conclusion The adjustment of A- and C-weighted kurtosis to equivalent sound level LEX,8 h can effectively improve the accuracy of the ISO 1999 prediction model in NIPTS prediction, and compared with the C-weighted, the A-weighted kurtosis can improve the result of the ISO 1999 prediction model in terms of underestimating NIPTS.
7.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
8.Clinical value of peripheral immune function status in the assessment of ‘Deficiency of Vital Qi’ in lung cancer metastasis
XU Fan1,2 ; TIAN Jianhui1,2 ; LIU Youjun1,2 ; CHENG Zhenyang1,2 ; QUE Zujun2 ; LUO Bin1 ; YANG Yun1 ; YAO Jialiang1 ; YAO Wang1 ; LU Xinyi1,2 ; LIU Yao1,2 ; ZHOU Yiyang1 ; WU Jianchun1 ; LUO Yingbin1 ; LI Minghua1 ; SHI Wenfei1 ; CUI Yajing1 ; SHANGGUAN Wenji3 ; LI Yan1
Chinese Journal of Cancer Biotherapy 2025;32(10):1065-1070
[摘 要] 目的:探索外周免疫功能状态与肺癌转移的关联,筛选可用于肺癌转移“正虚”评估的外周血免疫标志物。方法:回顾性分析2023年3月至2025年4月期间上海中医药大学附属市中医医院收治的肺癌患者治疗前的外周血免疫标志物,根据是否存在远处转移,将患者分为无转移组与转移组,比较两组间免疫细胞和细胞因子的表达差异。将单因素分析P < 0.05的外周血免疫指标纳入多因素二元Logistic回归模型,以识别肺癌转移的独立预测因素。结果:共纳入193例肺癌患者(无转移组101例,转移组92例),两组在性别、年龄、吸烟史、饮酒史、病理类型间的差异均无统计学意义(均P > 0.05)。单因素分析显示,无转移组与转移组间有多项免疫指标存在显著差异(均P < 0.05),包括:淋巴细胞计数,CD3+、CD4+、CD8+ T、CD19+ B细胞及CD3-CD16+56+ NK细胞绝对计数,Treg细胞、CD8+CD28+ Treg细胞、G-MDSC和CD3-CD16+CD56+dim NK细胞百分率,以及细胞因子IL-1β、IL-6和IL-10水平。将差异性指标行二元Logistic回归分析,提示外周血中Treg细胞和CD8+CD28+ Treg细胞百分率是肺癌发生远处转移的独立预测因素[OR = 1.193, 95% CI(1.047, 1.36), P < 0.01; OR = 0.978, 95% CI(0.957, 0.999), P < 0.05]。结论:外周血免疫功能紊乱是肺癌转移“正虚”的生物学基础,本研究以量化指标证实外周免疫功能状态与肺癌转移的相关性,为“正虚伏毒”和“肿瘤转移态”理论提供了实证。
9.Development of a droplet digital polymerase chain reaction assay for the sensitive detection of total and integrated HIV-1 DNA
Lin YUAN ; Zhiying LIU ; Xin ZHANG ; Feili WEI ; Shan GUO ; Na GUO ; Lifeng LIU ; Zhenglai MA ; Yunxia JI ; Rui WANG ; Xiaofan LU ; Zhen LI ; Wei XIA ; Hao WU ; Tong ZHANG ; Bin SU
Chinese Medical Journal 2024;137(6):729-736
Background::Total human immunodeficiency virus (HIV) DNA and integrated HIV DNA are widely used markers of HIV persistence. Droplet digital polymerase chain reaction (ddPCR) can be used for absolute quantification without needing a standard curve. Here, we developed duplex ddPCR assays to detect and quantify total HIV DNA and integrated HIV DNA.Methods::The limit of detection, dynamic ranges, sensitivity, and reproducibility were evaluated by plasmid constructs containing both the HIV long terminal repeat (LTR) and human CD3 gene (for total HIV DNA) and ACH-2 cells (for integrated HIV DNA). Forty-two cases on stable suppressive antiretroviral therapy (ART) were assayed in total HIV DNA and integrated HIV DNA. Correlation coefficient analysis was performed on the data related to DNA copies and cluster of differentiation 4 positive (CD4 +) T-cell counts, CD8 + T-cell counts and CD4/CD8 T-cell ratio, respectively. The assay linear dynamic range and lower limit of detection (LLOD) were also assessed. Results::The assay could detect the presence of HIV-1 copies 100% at concentrations of 6.3 copies/reaction, and the estimated LLOD of the ddPCR assay was 4.4 HIV DNA copies/reaction (95% confidence intervals [CI]: 3.6-6.5 copies/reaction) with linearity over a 5-log 10-unit range in total HIV DNA assay. For the integrated HIV DNA assay, the LLOD was 8.0 copies/reaction (95% CI: 5.8-16.6 copies/reaction) with linearity over a 3-log 10-unit range. Total HIV DNA in CD4 + T cells was positively associated with integrated HIV DNA ( r = 0.76, P <0.0001). Meanwhile, both total HIV DNA and integrated HIV DNA in CD4 + T cells were inversely correlated with the ratio of CD4/CD8 but positively correlated with the CD8 + T-cell counts. Conclusions::This ddPCR assay can quantify total HIV DNA and integrated HIV DNA efficiently with robustness and sensitivity. It can be readily adapted for measuring HIV DNA with non-B clades, and it could be beneficial for testing in clinical trials.
10.Severe acute respiratory syndrome coronavirus 2-specific T-cell responses are induced in people living with human immunodeficiency virus after booster vaccination
Xiuwen WANG ; Yongzheng LI ; Junyan JIN ; Xiaoran CHAI ; Zhenglai MA ; Junyi DUAN ; Guanghui ZHANG ; Tao HUANG ; Xin ZHANG ; Tong ZHANG ; Hao WU ; Yunlong CAO ; Bin SU
Chinese Medical Journal 2024;137(22):2734-2744
Background::T-cell-mediated immunity is crucial for the effective clearance of viral infection, but the T-cell-mediated immune responses that are induced by booster doses of inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in people living with human immunodeficiency virus (PLWH) remain unclear.Methods::Forty-five PLWH who had received antiretroviral therapy (ART) for more than two years and 29 healthy controls (HCs) at Beijing Youan Hospital were enrolled to assess the dynamic changes in T-cell responses between the day before the third vaccine dose (week 0) and 4 or 12 weeks (week 4 or week 12) after receiving the third dose of inactivated SARS-CoV-2 vaccine. Flow cytometry, enzyme-linked immunospot (ELISpot), and multiplex cytokines profiling were used to assess T-cell responses at the three timepoints in this study.Results::The results of the ELISpot and activation-induced marker (AIM) assays showed that SARS-CoV-2-specific T-cell responses were increased in both PLWH and HCs after the third dose of the inactivated SARS-CoV-2 vaccine, and a similar magnitude of immune response was induced against the Omicron (B.1.1.529) variant compared to the wild-type strain. In detail, spike-specific T-cell responses (measured by the ELISpot assay for interferon γ [IFN-γ] release) in both PLWH and HCs significantly increased in week 4, and the spike-specific T-cell responses in HCs were significantly stronger than those in PLWH 4 weeks after the third vaccination. In the AIM assay, spike-specific CD4 + T-cell responses peaked in both PLWH and HCs in week 12. Additionally, significantly higher spike-specific CD8 + T-cell responses were induced in PLWH than in HCs in week 12. In PLWH, the release of the cytokines interleukin-2 (IL-2), tumour necrosis factor-alpha (TNF-α), and IL-22 by peripheral blood mononuclear cells (PBMCs) that were stimulated with spike peptides increased in week 12. In addition, the levels of IL-4 and IL-5 were higher in PLWH than in HCs in week 12. Interestingly, the magnitude of SARS-CoV-2-specific T-cell responses in PLWH was negatively associated with the extent of CD8 + T-cell activation and exhaustion. In addition, positive correlations were observed between the magnitude of spike-specific T-cell responses (determined by measuring IFN-γ release by ELISpot) and the amounts of IL-4, IL-5, IL-2 and IL-17F. Conclusions::Our findings suggested that SARS-CoV-2-specific T-cell responses could be enhanced by the booster dose of inactivated COVID-19 vaccines and further illustrate the importance of additional vaccination for PLWH.

Result Analysis
Print
Save
E-mail