1.Efficacy and safety of secukinumab in Chinese patients with psoriasis: Update of six-year real-world data and a meta-analysis.
He HUANG ; Yaohua ZHANG ; Caihong ZHU ; Zhengwei ZHU ; Yujun SHENG ; Min LI ; Huayang TANG ; Jinping GAO ; Dawei DUAN ; Hequn HUANG ; Weiran LI ; Tingting ZHU ; Yantao DING ; Wenjun WANG ; Yang LI ; Xianfa TANG ; Liangdan SUN ; Yanhua LIANG ; Xuejun ZHANG ; Yong CUI ; Bo ZHANG
Chinese Medical Journal 2025;138(23):3198-3200
2.Research progress on molecular mechanisms of ginsenosides in alleviating acute lung injury.
Han-Yang ZHAO ; Xun-Jiang WANG ; Qiong-Wen XUE ; Bao-Lian XU ; Xu WANG ; Shu-Sheng LAI ; Ming CHEN ; Li YANG ; Zheng-Tao WANG ; Li-Li DING
China Journal of Chinese Materia Medica 2025;50(16):4451-4470
Acute lung injury(ALI) is a critical clinical condition primarily characterized by refractory hypoxemia and infiltration of inflammatory cells in lung tissue, which can progress into a more severe form known as acute respiratory distress syndrome(ARDS). Immune cells and inflammatory cytokines play important roles in the progression of the disease. Due to its unclear pathogenesis and the lack of effective clinical treatments, ALI is associated with a high mortality rate and severely affects patients' quality of life, making the search for effective therapeutic agents particularly urgent. Ginseng Radix et Rhizoma, the dried root of the perennial herb Panax ginseng from the Araliaceae family, contains active ingredients such as saponins and polysaccharides, which possess various pharmacological effects including anti-tumor activity, immune regulation, and metabolic modulation. In recent years, studies have shown that ginsenosides exhibit notable effects in reducing inflammation, ameliorating epithelial and endothelial cell injury, and providing anticoagulant action, indicating their comprehensive role in alleviating lung injury. This review summarizes the pathogenesis of ALI and the molecular mechanisms through which ginsenosides act at different stages of ALI development. The aim is to provide a scientific reference for the development of ginsenoside-based drugs targeting ALI, as well as a theoretical basis for the clinical application of Ginseng Radix et Rhizoma in the treatment of ALI.
Ginsenosides/pharmacology*
;
Humans
;
Acute Lung Injury/immunology*
;
Animals
;
Panax/chemistry*
;
Drugs, Chinese Herbal
3.Curative Efficacy Analysis of Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia with ASXL1 Mutation.
Ya-Jie SHI ; Xin-Sheng XIE ; Zhong-Xing JIANG ; Ding-Ming WAN ; Rong GUO ; Tao LI ; Xia ZHANG ; Xue LI ; Yu-Pei ZHANG ; Yue SU
Journal of Experimental Hematology 2025;33(3):720-725
OBJECTIVE:
To explore the efficacy and apoptosis of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the treatment of acute myeloid leukemia (AML) with ASXL1 mutation.
METHODS:
The clinical data of 80 AML patients with ASXL1 mutation treated in our hospital from January 2019 to December 2021 were retrospectively analyzed. The clinical characteristics of the patients were summarized, and the therapeutic effect and prognostic factors of allo-HSCT for the patients were analyzed.
RESULTS:
Among the 80 patients, 38 were males and 42 were females, and the median age was 39(14-65) years. There were 17 patients in low-risk group, 25 patients in medium-risk group and 38 patients in high-risk group. ASXL1 mutation co-occurred with many other gene mutations, and the frequent mutated genes were TET2 (71.25%), NRAS (18.75%), DNMT3A (16.25%), NPM1 (15.00%), CEBPA (13.75%). Among medium and high-risk patients, 29 underwent allo-HSCT, while 34 received chemotherapy. The 2-year overall survival (OS) rate and disease-free survival (DFS) rate of the allo-HSCT group were 72.4% and 70.2%, while those of the chemotherapy group were 44.1% and 34.0%, respectively. The statistical analysis showed significant differences between the two groups (both P < 0.01). Multivariate analysis showed that age at transplantation >50- years and occurrence of acute graft-versus-host disease after transplantation were poor prognostic factors for OS and DFS in transplantation patients.
CONCLUSION
Allo-HSCT can improve the prognosis of AML patients with ASXL1 mutation.
Humans
;
Leukemia, Myeloid, Acute/therapy*
;
Hematopoietic Stem Cell Transplantation
;
Female
;
Male
;
Middle Aged
;
Mutation
;
Adult
;
Repressor Proteins/genetics*
;
Adolescent
;
Retrospective Studies
;
Aged
;
Nucleophosmin
;
Young Adult
;
Transplantation, Homologous
;
Prognosis
;
Survival Rate
4.Impact of admission-blood-glucose-to-albumin ratio on all-cause mortality and renal prognosis in critical patients with coronary artery disease: insights from the MIMIC-IV database.
Yong HONG ; Bo-Wen ZHANG ; Jing SHI ; Ruo-Xin MIN ; Ding-Yu WANG ; Jiu-Xu KAN ; Yun-Long GAO ; Lin-Yue PENG ; Ming-Lu XU ; Ming-Ming WU ; Yue LI ; Li SHENG
Journal of Geriatric Cardiology 2025;22(6):563-577
BACKGROUND:
Blood glucose and serum albumin have been associated with cardiovascular disease prognosis, but the impact of admission-blood-glucose-to-albumin ratio (AAR) on adverse outcomes in critical ill coronary artery disease (CAD) patients was not investigated.
METHODS:
Patients diagnosed with CAD were non-consecutively selected from the MIMIC-IV database and categorized into quartiles based on their AAR. The primary outcome was 1-year mortality, and secondary endpoints were in-hospital mortality, acute kidney injury (AKI), and renal replacement therapy (RRT). A restricted cubic splines model and Cox proportional hazard models assessed the association between AAR and adverse outcomes in CAD patients. Kaplan-Meier survival analysis determined differences in endpoints across subgroups.
RESULTS:
A total of 8360 patients were included. There were 726 patients (8.7%) died in the hospital and 1944 patients (23%) died at 1 year. The incidence of AKI and RRT was 63% and 4.3%, respectively. High AAR was markedly associated with in-hospital mortality (HR = 1.587, P = 0.003), 1-year mortality (HR = 1.502, P < 0.001), AKI incidence (HR = 1.579, P < 0.001), and RRT (HR = 1.640, P < 0.016) in CAD patients in the completely adjusted Cox proportional hazard model. Kaplan-Meier survival analysis noted substantial differences in all endpoints based on AAR quartiles. Stratified analysis and interaction test demonstrated stable correlations between AAR and outcomes.
CONCLUSIONS
The results highlight that AAR may be a potential indicator for assessing in-hospital mortality, 1-year mortality, and adverse renal prognosis in critical CAD patients.
6.Ku70 Functions as an RNA Helicase to Regulate miR-124 Maturation and Neuronal Cell Differentiation
Ai-Xue HUANG ; Rui-Ting LI ; Yue-Chao ZHAO ; Jie LI ; Hui LI ; Xue-Feng DING ; Lin WANG ; Can XIAO ; Xue-Mei LIU ; Cheng-Feng QIN ; Ning-Sheng SHAO
Progress in Biochemistry and Biophysics 2024;51(6):1418-1433
ObjectiveHuman Ku70 protein mainly involves the non-homologous end joining (NHEJ) repair of double-stranded DNA breaks (DSB) through its DNA-binding properties, and it is recently reported having an RNA-binding ability. This paper is to explore whether Ku70 has RNA helicase activity and affects miRNA maturation. MethodsRNAs bound to Ku protein were analyzed by RNA immunoprecipitation sequencing (RIP-seq) and bioinfomatic anaylsis. The expression relationship between Ku protein and miRNAs was verified by Western blot (WB) and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assays. Binding ability of Ku protein to the RNAs was tested by biolayer interferometry (BLI) assay. RNA helicase activity of Ku protein was identified with EMSA assay. The effect of Ku70 regulated miR-124 on neuronal differentiation was performed by morphology analysis, WB and immunofluorescence assays with or without Zika virus (ZIKV) infection. ResultsWe revealed that the Ku70 protein had RNA helicase activity and affected miRNA maturation. Deficiency of Ku70 led to the up-regulation of a large number of mature miRNAs, especially neuronal specific miRNAs like miR-124. The knockdown of Ku70 promoted neuronal differentiation in human neural progenitor cells (hNPCs) and SH-SY5Y cells by boosting miR-124 maturation. Importantly, ZIKV infection reduced the expression of Ku70 whereas increased expression of miR-124 in hNPCs, and led to morphologically neuronal differentiation. ConclusionOur study revealed a novel function of Ku70 as an RNA helicase and regulating miRNA maturation. The reduced expression of Ku70 with ZIKV infection increased the expression of miR-124 and led to the premature differentiation of embryonic neural progenitor cells, which might be one of the causes of microcephaly.
7.Raman Spectroscopy Combined with Partial Least Squares for Quantitative Analysis of Two Kinds of Microplastics in Water Samples
Jian-Ming DING ; Xin WANG ; Rong-Ling ZHANG ; Li-Yuan ZHOU ; Tian-Long ZHANG ; Hong-Sheng TANG ; Hua LI
Chinese Journal of Analytical Chemistry 2024;52(10):1581-1590
Microplastics(MPs)are emerging contaminants in aquatic environments characterized by their polar structure,small particle size(Typically less than 5 mm),large surface area,good stability,and resistance to biodegradation.They pose adverse effects on the normal physiological activities of aquatic organisms and can accumulate in biota,including humans.Therefore,there is an urgent need for rapid and accurate quantitative analysis of MPs in water environments.In this study,Raman spectroscopy combined with partial least squares(PLS)was employed for rapid and accurate quantitative analysis of polyethylene(PE)and polystyrene(PS)MPs in real water samples.Initially,33 simulated water samples containing different concentrations of MPs were prepared,and their Raman spectra were collected.Six spectral preprocessing methods(Normalization,multiplicative scatter correction,standard normal variate transformation,first derivative,second derivative,and wavelet transform)were investigated for their impact on the predictive performance of PLS calibration models.Subsequently,three variable selection methods including synergy interval partial least squares(SiPLS),variable importance in projection(VIP)and mutual information(MI)were employed to optimize the input variables of the PLS calibration model.The predictive capability of the PLS calibration model was evaluated and validated using leave-one-out cross-validation.Under the optimal conditions of spectral preprocessing,variable selection,input variables and latent variables,the wavelet transform-partial least squares(WT-PLS)calibration model based on distilled water was established,and the contents of PE and PS in real water samples were predicted with prediction correlation coefficients(R2p)of 0.9540 and 0.8472 for PE and PS,respectively,and prediction errors(Errorp)of 0.0690 and 0.1126,respectively.Furthermore,a mixed sample MI-PLS calibration model was developed,demonstrating the best predictive performance in real water samples(With R2p values of 0.9776 and 0.9755 for PE and PS,respectively,and Errorp values of 0.0360 and 0.0392,respectively).This method provided a novel approach and new methodology for quantitative analysis of MPs and other organic pollutants in real water samples.
8.Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis of Multilayer Thin Film Thickness of PbS Quantum Dot Photovoltaic Devices
Ding-Wen ZHANG ; Hui-Lai LI ; Fan LI ; Wei GUO ; Lan-Lan JIN ; Sheng-Hong HU
Chinese Journal of Analytical Chemistry 2024;52(10):1609-1618
Accurate determination of the thickness of multi-layered nanofilm materials is of great importance to advance the development of thin film deposition technology and ensure the quality assurance of photovoltaic materials.Laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)has been successfully employed for depth profiling of thin film materials,such as metal coatings.However,the accuracy of interface discrimination and thin layer thickness measurement is limited by the mixing effects of elemental signals.In this work,a high-depth resolution method for measuring the thin film thickness of lead sulfide(PbS)colloidal quantum dot(CQD)photovoltaic devices by LA-ICP-MS was introduced.The influence of different laser parameters on the mixing effects of element signals during the ablation process was compared,and the results showed that the laser ablation behavior of multi-layered nanofilm materials were improved and the mixing of element signals were reduced by optimizing parameters such as laser energy density and spot diameter.Meanwhile,a self-developed aerosol rapid wash-out small volume tubular ablation cell was used to effectively improve the aerosol transport efficiency,and the wash-out time of aerosol was(1.60±0.6)s.Compared with commercial cylindrical ablation cells,the depth profile of multi-layer thin film samples was clearer.The depth profile of the interlayer interface showed a significant melting phenomenon during the ablation of the PbS CQD layer,leading to severe mixing of elemental signals at the PbS/ZnO layer interface.Under the conditions such as 2.5 J/cm2 laser energy,32 μm spot diameter,and 1 Hz repetition rate,the average ablation rates of Au,PbS and ZnO layers in PbS CQD photovoltaic devices were(60±2)nm/pulse,(69±5)nm/pulse,and(22±2)nm/pulse,with depth resolution of(26±2)nm,(213±11)nm,and(68±6)nm,respectively.The thickness of PbS CQD photovoltaic device films from the same batch was determined,and the test results exhibited good consistency with scanning electron microscope(SEM)measurement values,with a relative deviation of less than 6%.This method could accurately determine the thickness of nanoscale multilayer thin film samples,which was crucial for improving the performance of photovoltaic devices and controlling product quality.
9.Roles of intestinal mucosa,intestinal immunity and microbiota in entero-genic Candida albicans infection
Hui-Ting CHEN ; Jia-Sheng LI ; Zhi-Chang XU ; Ding-Mei QIN ; Yi ZHANG ; Rui-Rui WANG
Chinese Journal of Infection Control 2024;23(5):631-637
Enterogenic Candida albicans(C.albicans)infection refers to the translocation of intestinal colonized C.albicans under certain conditions,breaking through the intestinal tract,causing tissue infection or even invasive C.albicans infection.As the first contact point of Candida,the intestinal mucosa is the first line defending coloni-zation or invasion of C.albicans,often inhibiting infection by physical barrier and activating host immunity.As an-other defense mechanism,the intestinal microbiota jointly resists the invasive infection of C.albican through regula-ting pH,secreting antimicrobial peptides,and competing for adhesion points.This review summarizes the roles of three key factors,namely intestinal mucosa,intestinal immunity and microbiota,in enterogenic C.albicans infec-tion,providing new ideas for scientific research on invasive candidiasis caused by intestinal colonization.
10.Research status of quercetin-mediated MAPK signaling pathway in prevention and treatment of osteoporosis
Ke-Xin YUAN ; Xing-Wen XIE ; Ding-Peng LI ; Yi-Sheng JING ; Wei-Wei HUANG ; Xue-Tao WANG ; Hao-Dong YANG ; Wen YAN ; Yong-Wu MA
The Chinese Journal of Clinical Pharmacology 2024;40(9):1375-1379
Quercetin can mediate the activation of mitogen-activated protein kinase(MAPK)signaling pathways to prevent osteoporosis(OP).This paper comprehensively discusses the interrelationship between MAPK and osteoporosis-related cells based on the latest domestic and international research.Additionally,it elucidates the research progress of quercetin in mediating the MAPK signaling pathway for OP prevention.The aim is to provide an effective foundation for the clinical prevention and treatment of OP and the in-depth development of quercetin.

Result Analysis
Print
Save
E-mail