1.Optimization of Ovarian Tissue Vitrification Using Hydrogel Encapsulation and Magnetic Induction Nanowarming
Yu-Kun CAO ; Na YE ; Zheng LI ; Xin-Li ZHOU
Progress in Biochemistry and Biophysics 2025;52(2):464-477
ObjectiveFor prepubertal and urgently treated malignant tumor patients, ovarian tissue cryopreservation and transplantation represent more appropriate fertility preservation methods. Current clinical practices often involve freezing ovarian tissue with high concentrations of cryoprotectants (CPAs) and thawing with water baths. These processes lead to varying degrees of toxicity and devitrification damage to ovarian tissue. Therefore, this paper proposes optimized methods for vitrification of ovarian tissues based on sodium alginate hydrogel encapsulation and magnetic induction nanowarming technology. MethodsFirstly, the study investigated the effects of sodium alginate concentration, the sequence of hydrogel encapsulation and CPAs loading on vitrification efficiency of encapsulated ovarian tissue. Additionally, the capability of sodium alginate hydrogel encapsulation to reduce the required concentration of CPAs was validated. Secondly, a platform combining water bath and magnetic induction nanowarming was established to rewarm ovarian tissue under various concentrations of magnetic nanoparticles and magnetic field strengths. The post-warming follicle survival rate, antioxidant capacity, and ovarian tissue integrity were evaluated to assess the efficacy of the method. ResultsThe study found that ovarian tissue encapsulated with 2% sodium alginate hydrogel exhibited the highest follicle survival rate after vitrification. The method of loading CPAs prior to encapsulation proved more suitable for ovarian tissue cryopreservation, effectively reducing the required concentration of CPAs by 50%. A combination of 8 g/L Fe3O4 nanoparticles and an alternating magnetic field of 300 Gs showed optimal warming effectiveness for ovarian tissue. Combining water bath rewarming with magnetic induction nanowarming yielded the highest follicle survival rate, enhanced antioxidant capacity, and preserved tissue morphology. ConclusionSodium alginate hydrogel encapsulation of ovarian tissue reduces the concentration of CPAs required during the freezing process. The combination of magnetic induction nanowarming with water bath provides an efficient method ovarian tissue rewarming. This study offers novel approaches to optimize ovarian tissues vitrification.
2.Application of ultra-wide-field swept-source optical coherence tomography angiography in patients with diabetic retinopathy and diabetic kidney disease
Zhutao LIU ; Beibei HAN ; Wen YU ; Na LI ; Tian ZHANG
International Eye Science 2025;25(5):819-825
AIM: To analyze the clinical utility and value of the ultra-wide-field swept-source optical coherence tomography angiography(UWF-SS-OCTA)technique in changes of blood flow density and thickness in the central and peripheral regions of the retina and choroid in patients with nonproliferative diabetic retinopathy(NPDR)with or without diabetic kidney disease(DKD).METHODS: Cross-sectional study. Totally 50 cases(50 eyes)of diabetes mellitus(DM)that visited our hospital between June 2023 and June 2024 were included. They were divided into three groups: NPDR combined with DKD group(DKD group, n=20), NPDR without DKD group(NDKD group, n=20), and DM without retinopathy group(DM group, n=10, which served as control). In order to investigate the impact of DKD on ocular microangiopathy in NPDR patients, the retina and choroid within 24 mm×20 mm of the scan were separated into central and peripheral areas using the 3×3 nine-grid partition option that comes with UWF-SS-OCTA, and the parameters were then quantitatively assessed.RESULTS:The central and peripheral blood flow density of the choroidal capillary layer(CCP)was statistically significant between the DM group and the DKD group(t=3.93, P=0.0003; t=3.34, P=0.0016), and between the NDKD group and the DKD group(t=-3.06, P=0.003; t=-2.55, P=0.013), but there was no statistically significant difference between the DM group and the NDKD group(t=1.44, P=0.157; t=1.26, P=0.21). The mid-large choroidal vessel(MLCV)showed a progressive decline in central and peripheral blood flow density in the DM, NDKD, and DKD groups(F=13.74, 19.03, all P<0.0001). The DM, NDKD, and DKD groups saw a progressive decrease in central and peripheral choroidal thickness(CT; F=10.72, P=0.0001; F=13.12, P<0.001).CONCLUSION:CCP, MLCV, and CT can be used as visual indicators to identify impaired renal function in patients with NPDR. UWF-SS-OCTA can support the development of precise and noninvasive monitoring and treatment technology for diabetic ocular microangiopathy, while also offering a scientific foundation for the joint management of DR and DKD.
3.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
4.Development of a nomogram-based risk prediction model for chronic obstructive pulmonary disease incidence in community-dwelling population aged 40 years and above in Shanghai
Yixuan ZHANG ; Yiling WU ; Jinxin ZANG ; Xuyan SU ; Xin YIN ; Jing LI ; Wei LUO ; Minjun YU ; Wei WANG ; Qi ZHAO ; Qin WANG ; Genming ZHAO ; Yonggen JIANG ; Na WANG
Shanghai Journal of Preventive Medicine 2025;37(8):669-675
ObjectiveTo develop a nomogram-based risk prediction model for chronic obstructive pulmonary disease (COPD) incidence among the community-dwelling population aged 40 years old and above, so as to provide targeted references for the screening and prevention of COPD. MethodsBased on a natural population cohort in suburban Shanghai, a total of 3 381 randomly selected participants aged ≥40 years underwent pulmonary function tests between July and October 2021. Cox stepwise regression analysis was used to develop overall and gender-specific risk prediction models, along with the construction of corresponding risk nomograms. Model predictive performance was evaluated using the C-indice, area under the curve (AUC) values, and Brier score. Stability was assessed through 10-fold cross-validation and sensitivity analysis. ResultsA total of 3 019 participants were included, with a median follow-up duration of 4.6 years. The COPD incidence density was 17.22 per 1 000 person-years, significantly higher in males (32.04/1 000 person-years) than that in females (7.38/1 000 person-years) (P<0.001). The overall risk prediction model included the variables such as gender, age, education level, BMI, smoking, passive smoking, and respiratory comorbidities. The male-specific model incorporated the variables such as age, BMI, respiratory comorbidities, and smoking, while the female-specific model included age, marital status, respiratory comorbidities, and pulmonary tuberculosis history. The C-indices for the overall, male-specific, and female-specific models were 0.829, 0.749, and 0.807, respectively. The 5-year AUC values were 0.785, 0.658, and 0.811, with Brier scores of 0.103, 0.176, and 0.059, respectively. Both 10-fold cross-validated C-indices and sensitivity analysis (excluding participants with a follow-up duration of <6 months) yielded C-indices were above 0.740. ConclusionThis study developed concise and practical overall and gender-specific COPD risk prediction models and corresponding nomograms. The models demonstrated robust performance in predicting COPD incidence, providing a valuable reference for identifying high-risk populations and formulating targeted screening and personalized management strategies.
5.Intermittent fasting ameliorates rheumatoid arthritis by harassing deregulated synovial fibroblasts.
Lei LI ; Jin DONG ; Yumu ZHANG ; Chen ZHAO ; Wen WEI ; Xueqin GAO ; Yao YU ; Meilin LU ; Qiyuan SUN ; Yuwei CHEN ; Xuehua JIAO ; Jie LU ; Na YUAN ; Yixuan FANG ; Jianrong WANG
Chinese Medical Journal 2025;138(23):3201-3203
6.Research progress of nucleus tractus solitarius involved in central regulation of hypertension.
Yu TIAN ; Na LI ; Yi ZHANG ; Hong-Jie WANG
Acta Physiologica Sinica 2025;77(1):85-94
The nucleus tractus solitarius (NTS) is the primary brain region for receiving and integrating cardiovascular afferent signals. It plays a crucial role in maintaining balance of autonomic nervous system and regulating blood pressure through cardiovascular reflexes. Neurons within the NTS form complex synaptic connections and interact reciprocally with other brain regions. The NTS regulates autonomic nervous system activity and arterial blood pressure through modulating baroreflex, sympathetic nerve activity, renin-angiotensin-aldosterone system, and oxidative stress. Dysfunctions in NTS activity may contribute to hypertension. Understanding the NTS' role in centrally regulating blood pressure and alterations of neurotransmission or signaling pathways in the NTS may provide rationale for new therapeutic strategies of prevention and treatment. This review summarizes the research findings on autonomic nervous system regulation and arterial blood pressure control by NTS, as well as unresolved questions, in order to provide reference for future investigation.
Solitary Nucleus/physiopathology*
;
Hypertension/physiopathology*
;
Humans
;
Animals
;
Autonomic Nervous System/physiopathology*
;
Blood Pressure/physiology*
;
Baroreflex/physiology*
;
Renin-Angiotensin System/physiology*
;
Sympathetic Nervous System/physiology*
7.Efficacy and mechanism of Cistanches Herba extract in treating reproductive dysfunction in rats with kidney-Yang deficiency based on metabolomics.
Ze-Hui LI ; Pan-Yu XU ; Jia-Shan LI ; Li GUO ; Yuan LI ; Si-Qi LI ; Na LIN ; Ying XU
China Journal of Chinese Materia Medica 2025;50(7):1850-1860
This study investigates the reproductive protective effect and potential mechanism of Cistanches Herba extract(CHE) on a rat model of kidney-Yang deficiency induced by adenine. Rats were randomly divided into five groups: normal, model, low-dose CHE(0.6 g·kg~(-1)·d~(-1)), high-dose CHE(1.2 g·kg~(-1)·d~(-1)), and L-carnitine(100 mg·kg~(-1)·d~(-1)). The rats were administered adenine(200 mg·kg~(-1)·d~(-1)) by gavage for the first 14 days to induce kidney-Yang deficiency, while simultaneously receiving drug treatment. After 14 days, the modeling was discontinued, but drug treatment continued to 49 days. The content of components in CHE was analyzed by high-performance liquid chromatography. The adenine-induced kidney-Yang deficiency model was assessed through symptom characterization and measurement of testosterone(T) levels using an enzyme-linked immunosorbent assay kit. Pathological damage to the testis and epididymis was evaluated based on the wet weight and performing hematoxylin-eosin staining. Sperm density and motility were measured using computer-aided sperm analysis, and sperm viability was assessed using live/dead sperm staining kits, and sperm morphology was evaluated using eosin staining, thereby determining rat sperm quality. Metabolomics was used to analyze changes in serum metabolites, enrich related metabolic pathways, and explore the mechanism of CHE in improving reproductive function damage in rats with kidney-Yang deficiency syndrome. Compared to the normal group, the model group exhibited significant kidney-Yang deficiency symptoms, reduced T levels, decreased testicular and epididymal wet weights, and significant pathological damage to the testis and epididymis. The sperm density, motility, and viability decreased, with an increased rate of sperm abnormalities. In contrast, rats treated with CHE showed marked improvements in kidney-Yang deficiency symptoms, restored T levels, alleviated pathological damage to the testis and epididymis, and improved various sperm parameters. Metabolomics results revealed 286 differential metabolites between the normal and model groups(191 upregulated and 95 downregulated). Seventy-five differential metabolites were identified between the model and low-dose CHE groups(21 upregulated and 54 downregulated). A total of 24 common differential metabolites were identified across the three groups, with 22 of these metabolites exhibiting opposite regulation trends between the two comparison groups. These metabolites were primarily involved in linoleic acid metabolism, ether lipid metabolism, and pantothenic acid and coenzyme A biosynthesis, as well as metabolites including 13-hydroperoxylinoleic acid, lysophosphatidylcholine, and pantethine. CHE can improve kidney-Yang deficiency symptoms in rats, alleviate reproductive organ damage, and enhance sperm quality. The regulation of lipid metabolism may be a potential mechanism through which CHE improves reproductive function in rats with kidney-Yang deficiency. The potential bioactive compounds of CHE include echinacoside, verbascoside, salidroside, betaine, and cistanoside A.
Animals
;
Male
;
Rats
;
Yang Deficiency/physiopathology*
;
Metabolomics
;
Kidney/physiopathology*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Cistanche/chemistry*
;
Kidney Diseases/metabolism*
;
Testis/metabolism*
;
Humans
;
Reproduction/drug effects*
;
Testosterone/blood*
8.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal
9.Novel biallelic MCMDC2 variants were associated with meiotic arrest and nonobstructive azoospermia.
Hao-Wei BAI ; Na LI ; Yu-Xiang ZHANG ; Jia-Qiang LUO ; Ru-Hui TIAN ; Peng LI ; Yu-Hua HUANG ; Fu-Rong BAI ; Cun-Zhong DENG ; Fu-Jun ZHAO ; Ren MO ; Ning CHI ; Yu-Chuan ZHOU ; Zheng LI ; Chen-Cheng YAO ; Er-Lei ZHI
Asian Journal of Andrology 2025;27(2):268-275
Nonobstructive azoospermia (NOA), one of the most severe types of male infertility, etiology often remains unclear in most cases. Therefore, this study aimed to detect four biallelic detrimental variants (0.5%) in the minichromosome maintenance domain containing 2 ( MCMDC2 ) genes in 768 NOA patients by whole-exome sequencing (WES). Hematoxylin and eosin (H&E) demonstrated that MCMDC2 deleterious variants caused meiotic arrest in three patients (c.1360G>T, c.1956G>T, and c.685C>T) and hypospermatogenesis in one patient (c.94G>T), as further confirmed through immunofluorescence (IF) staining. The single-cell RNA sequencing data indicated that MCMDC2 was substantially expressed during spermatogenesis. The variants were confirmed as deleterious and responsible for patient infertility through bioinformatics and in vitro experimental analyses. The results revealed four MCMDC2 variants related to NOA, which contributes to the current perception of the function of MCMDC2 in male fertility and presents new perspectives on the genetic etiology of NOA.
Humans
;
Male
;
Azoospermia/genetics*
;
Meiosis/genetics*
;
Spermatogenesis/genetics*
;
Adult
;
Exome Sequencing
;
Microtubule-Associated Proteins/genetics*
;
Alleles
;
Infertility, Male/genetics*
10.Genetic screening and follow-up results in 3 001 newborns in the Yunnan region.
Ao-Yu LI ; Bao-Sheng ZHU ; Jin-Man ZHANG ; Ying CHAN ; Jun-Yue LIN ; Jie ZHANG ; Xiao-Yan ZHOU ; Hong CHEN ; Su-Yun LI ; Na FENG ; Yin-Hong ZHANG
Chinese Journal of Contemporary Pediatrics 2025;27(6):654-660
OBJECTIVES:
To evaluate the application value of genetic newborn screening (gNBS) in the Yunnan region.
METHODS:
A prospective study was conducted with a random selection of 3 001 newborns born in the Yunnan region from February to December 2021. Traditional newborn screening (tNBS) was used to test biochemical indicators, and targeted next-generation sequencing was employed to screen 159 genes related to 156 diseases. Positive-screened newborns underwent validation and confirmation tests, and confirmed cases received standardized treatment and long-term follow-up.
RESULTS:
Among the 3 001 newborns, 166 (5.53%) were initially positive for genetic screening, and 1 435 (47.82%) were genetic carriers. The top ten genes with the highest variation frequency were GJB2 (21.29%), DUOX2 (7.27%), HBA (6.14%), GALC (3.63%), SLC12A3 (3.33%), HBB (3.03%), G6PD (2.94%), SLC25A13 (2.90%), PAH (2.73%), and UNC13D (2.68%). Among the initially positive newborns from tNBS and gNBS, 33 (1.10%) and 47 (1.57%) cases were confirmed, respectively. A total of 48 (1.60%) cases were confirmed using gNBS+tNBS. The receiver operating characteristic curve analysis demonstrated that the areas under the curve for tNBS, gNBS, and gNBS+tNBS in diagnosing diseases were 0.866, 0.982, and 0.968, respectively (P<0.05). DeLong's test showed that the area under the curve for gNBS and gNBS+tNBS was higher than that for tNBS (P<0.05).
CONCLUSIONS
gNBS can expand the range of disease detection, and its combined use with tNBS can significantly shorten diagnosis time, enabling early intervention and treatment.
Humans
;
Infant, Newborn
;
Neonatal Screening
;
Genetic Testing
;
Female
;
Male
;
Follow-Up Studies
;
Prospective Studies
;
China

Result Analysis
Print
Save
E-mail