1.Exploring Chemical Constituent Distribution in Blood/Brain(Hippocampus) and Emotional Regulatory Effect of Raw and Vinegar-processed Products of Citri Reticulatae Pericarpium Viride
Yi BAO ; Yonggui SONG ; Qianmin LI ; Zhifu AI ; Genhua ZHU ; Ming YANG ; Huanhua XU ; Qin ZHENG ; Yiting HUANG ; Zihan GAO ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):189-197
ObjectiveTo investigate the migration and distribution characteristics of chemical constituents in blood and hippocampal tissues before and after vinegar processing of Citri Reticulatae Pericarpium Viride(CRPV), and to explore the potential material basis and mechanisms underlying their regulatory effects on emotional disorders by comparing the effects of raw and vinegar-processed products of CRPV. MethodsUltra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to characterize and identify the chemical constituents of raw and vinegar-processed products of CRPV extracts, as well as their migrating components in blood and hippocampal tissues after oral administration. Reference standards, databases, and relevant literature were utilized for compound annotation, with data processing performed using PeakView 1.2 software. Seventy male C57BL/6 mice were randomly divided into seven groups, including the blank group, model group, diazepam group(2.5 mg·kg-1), raw CRPV low/high dose groups(0.6, 1.2 g·kg-1), and vinegar-processed CRPV low/high dose groups(0.6, 1.2 g·kg-1), with 10 mice per group. Except for the blank group, all other groups underwent chronic restraint stress(2 h·d-1) for 20 d. Each drug-treated group received oral administration at the predetermined dose starting 10 d after modeling, with a total treatment duration of 10 d. Following model-based drug administration, mice underwent open-field, forced swimming, and elevated plus maze tests. After anesthesia with isoflurane, whole brains were collected from each group of mice, and hippocampi were dissected. Reactive oxygen species(ROS) level in hippocampal tissues was quantified by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe hippocampal tissue morphology. Immunofluorescence was performed to detect neuronal nuclei(NeuN) and peroxisome proliferator-activated receptor alpha(PPARα) expressions in hippocampal tissue. Then, pharmacodynamic evaluations were conducted to assess the effects of raw and vinegar-processed CRPV on mood disorders, exploring the potential mechanisms. ResultsVinegar processing caused significant changes in the chemical composition of CRPV, with 18 components showing increased relative content and 35 components showing decreased relative content. The primary changes occurred in flavonoid compounds, including 20 flavonoids, 20 flavonoid glycosides, 3 triterpenes, 3 phenolic acids, 1 alkaloid, and 6 other compounds. Twenty-one components were detected in blood(15 methoxyflavones, 4 flavonoid glycosides, and 2 phenolic acids), with 17 shared between raw and vinegar-processed CRPV. Seven components reached hippocampal tissues(all common to both forms). In regulating emotional disorders, Vinegar-processed CRPV exhibited superior antidepressant-like effects compared to raw products. HE staining revealed that both treatments improved hippocampal neuronal morphology, particularly in the damaged CA1 and CA3 regions. Immunofluorescence and ELISA analyses demonstrated that both raw and vinegar-processed CRPV significantly modulated NeuN and PPARα expressions in hippocampal tissue while alleviating oxidative stress induced by excessive ROS(P<0.05). ConclusionThe chemical composition of CRPV undergoes changes after vinegar processing, but the migrating components in blood and hippocampus are primarily methoxyflavonoids. These components may serve as the potential material basis for activating the PPARα pathway, thereby negatively regulating ROS generation in the hippocampus, reducing oxidative stress, and promoting the development of NeuN-positive neurons. These findings provide experimental evidence for enhancing quality standards, pharmacodynamic material research, and active drug development of raw and vinegar-processed CRPV.
2.Study on the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep
Ming QIAO ; Yao ZHAO ; Yi ZHU ; Yexia CAO ; Limei WEN ; Yuehong GONG ; Xiang LI ; Juanchen WANG ; Tao WANG ; Jianhua YANG ; Junping HU
China Pharmacy 2026;37(1):24-29
OBJECTIVE To investigate the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep. METHODS Network pharmacology was employed to identify the active components of L. ruthenicum and their associated disease targets, followed by enrichment analysis. A caffeine‑induced zebrafish model of sleep deprivation was established , and the zebrafish were treated with L. ruthenicum Murr. extract (LRME) at concentrations of 0.1, 0.2 and 0.4 mg/mL, respectively; 24 h later, behavioral changes of zebrafish and pathological alterations in brain neurons were subsequently observed. The levels of inflammatory factors [interleukin-6 (IL-6), IL-1β, IL-10, tumor necrosis factor-α (TNF-α)], oxidative stress markers [superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT)], and neurotransmitters [5- hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), glutamic acid (Glu), dopamine (DA), and norepinephrine (NE)] were measured. The protein expression levels of protein kinase B1 (AKT1), phosphorylated AKT1 (p-AKT1), epidermal growth factor receptor (EGFR), B-cell lymphoma 2 (Bcl-2), sarcoma proto-oncogene,non-receptor tyrosine kinase (SRC), and heat shock protein 90α family class A member 1 (HSP90AA1) in the zebrafish were also determined. RESULTS A total of 12 active components and 176 intersecting disease targets were identified through network pharmacology analysis. Among these, apigenin, naringenin and others were recognized as core active compounds, while AKT1, EGFR and others served as key targets; EGFR tyrosine kinase inhibitor resistance signaling pathway was identified as the critical pathway. The sleep improvement rates in zebrafish of LRME low-, medium-, and high-dose groups were 54.60%, 69.03% and 77.97%, 开发。E-mail:hjp_yft@163.com respectively, while the inhibition ratios of locomotor distance were 0.57, 0.83 and 0.95, respectively. Compared with the model group, the number of resting counts, resting time and resting distance were significantly increased/extended in LRME medium- and high-dose groups (P<0.05). Neuronal damage in the brain was alleviated. Additionally, the levels of IL-6, IL-1β, TNF-α, MDA, Glu, DA and NE, as well as the protein expression levels of AKT1, p-AKT1, EGFR, SRC and HSP90AA1, were markedly reduced (P<0.05), while the levels of IL-10, SOD, GSH-Px, CAT, 5-HT and GABA, as well as Bcl-2 protein expression, were significantly elevated (P<0.05). CONCLUSIONS L. ruthenicum Murr. demonstrates sleep-improving effects, and its specific mechanism may be related to the regulation of inflammatory responses, oxidative stress, neurotransmitter balance, and the EGFR tyrosine kinase inhibitor resistance signaling pathway.
3.Mechanism of in Vitro and in vivo Models of Osteoporosis Regulation by Active Ingredients of Traditional Chinese Medicine: A Review
Ming YANG ; Jinji WANG ; Xuefeng ZHUANG ; Xiaolei FANG ; Zhijie ZHU ; Huiwei BAO ; Lijing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):281-289
Osteoporosis is a common bone disease, whose incidence is still on the rise, posing great challenges to patients and society. This review mainly studies the pathogenesis of osteoporosis from the aspects of oxidative stress, inflammatory response, and glucolipotoxicity-induced injury and clarifies the efficacy and mechanism of some active ingredients of traditional Chinese medicine against osteoporosis through the integration of in vitro and in vivo experiments. The experimental results suggest that some active ingredients can improve bone resorption markers and maintain bone homeostasis by modulating inflammation, oxidative stress, etc. These active ingredients regulate osteoporosis through the receptor activator of nuclear transcription factor-κB (NF-κB) ligand (RANKL) pathway, osteoprotegerin (OPG) pathway, Wnt/β-catenin pathway, NF-κB pathway, mitogen-activated protein kinase (MAPK) pathway, adenosine monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and oxidative stress pathway. This review provides ideas for the progress of the prevention and treatment of osteoporosis with the active ingredients of traditional Chinese medicine, aiming to provide new potential lead compounds and reference for the development of innovative drugs and clinical therapy for the treatment of osteoporosis.
4.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
5.Key technologies and challenges in online adaptive radiotherapy for lung cancer.
Baiqiang DONG ; Shuohan ZHENG ; Kelly CHEN ; Xuan ZHU ; Sijuan HUANG ; Xiaobo JIANG ; Wenchao DIAO ; Hua LI ; Lecheng JIA ; Feng CHI ; Xiaoyan HUANG ; Qiwen LI ; Ming CHEN
Chinese Medical Journal 2025;138(13):1559-1567
Definitive treatment of lung cancer with radiotherapy is challenging, as respiratory motion and anatomical changes can increase the risk of severe off-target effects during radiotherapy. Online adaptive radiotherapy (ART) is an evolving approach that enables timely modification of a treatment plan during the interfraction of radiotherapy, in response to physiologic or anatomic variations, aiming to improve the dose distribution for precise targeting and delivery in lung cancer patients. The effectiveness of online ART depends on the seamless integration of multiple components: sufficient quality of linear accelerator-integrated imaging guidance, deformable image registration, automatic recontouring, and efficient quality assurance and workflow. This review summarizes the present status of online ART for lung cancer, including key technologies, as well as the challenges and areas of active research in this field.
Humans
;
Lung Neoplasms/radiotherapy*
;
Radiotherapy Planning, Computer-Assisted/methods*
6.A Hierarchical Strategy for Differentiation and Treatment of Recurrent Aphthous Oral Ulcers Related to Targeted Therapy for Lung Cancer Based on Yin Deficiency and Qi Collapse
Luchang CAO ; Guanghui ZHU ; Ruike GAO ; Manman XU ; Xiaoyu ZHU ; Ming LIN ; Ying ZHANG ; Jie LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):116-125
Tumor treatment-related adverse reactions are a major focus of clinical concern, among which recurrent aphthous oral ulcers (RAU) associated with targeted therapy for lung cancer (LC) are among the most painful and distressing for patients. Currently, modern medical interventions show limited efficacy, and there is an urgent need for more effective treatment strategies. This study differentiates RAU associated with targeted therapy for LC from chemotherapy-related and ordinary oral ulcers, elucidates the pathophysiological basis of such ulcers, and traces the theoretical origin of "Yin deficiency and Qi collapse". Based on the new system of "five perspectives on diagnosis and treatment" for tumor prevention and treatment, with a focus on the core and symptom perspectives and rooted in the traditional concept of "lung dominating Qi", we innovatively propose the concept of "medicine-induced ulcer" and are the first to introduce the theory of "Yin deficiency and Qi collapse" into the syndrome differentiation and treatment of RAU associated with targeted therapy for LC (i.e., medicine-induced ulcer). We propose that "Yin deficiency and Qi collapse" is the core pathogenesis of medicine-induced ulcers, in which the collapse of formless Qi is the key to their onset, while the deficiency and stasis of tangible Yin and blood constitute the root of recurrence. A hierarchical strategy for syndrome differentiation and treatment is established: first treating the collapse of formless Qi, then replenishing tangible deficiencies, and concurrently preventing recurrence. We emphasize that treatment should address both root and manifestation, with appropriate prioritization. In the acute phase, while relieving symptoms and promoting ulcer healing by nourishing Qi, uplifting collapse, and generating body fluids, attention should also be paid to nourishing spleen Yin, facilitating the circulation of nutritive Qi, and alleviating stasis to target the root pathogenesis and reduce recurrence. A verified case is presented to support this approach. This study enriches the theoretical framework and clinical methods of traditional Chinese medicine (TCM) in the treatment of RAU associated with targeted therapy for LC, promotes symptom management of treatment-related adverse reactions through integrated TCM and Western medicine, and provides theoretical support for the construction and development of a comprehensive differentiation and treatment system for lung cancer prevention, treatment, and rehabilitation.
7.Effect of moxibustion on small intestinal mucosal immune barrier in rats with diarrhea-predominant irritable bowel syndrome.
Kuiwu LI ; Haoran CHU ; Ling ZOU ; Jingru RUAN ; Lumin LIAO ; Xiaoyu HAN ; Wenli MA ; Ming FANG ; Jingwei ZHU ; Yucheng FANG ; Ziye WANG ; Tingting TONG
Chinese Acupuncture & Moxibustion 2025;45(7):935-944
OBJECTIVE:
To observe the effect of moxibustion on small intestinal mucosal immune barrier in rats with diarrhea-predominant irritable bowel syndrome (IBS-D) and explore its underlying mechanisms.
METHODS:
Of 38 newborn rats from 4 healthy SPF pregnant rats, 12 neonatal rats were randomly selected in a normal group. IBS-D model was prepared by the combined measures for the rest rats, including neonatal maternal separation, acetic acid enema and chronic restraint stress. Twenty-four successfully-modeled rats were randomized into a model group and a moxibustion group, 12 rats in each one. In the moxibustion group, suspending moxibustion was delivered at bilateral "Tianshu" (ST25) and "Shangjuxu" (ST37), 20 min each time, once daily and for 7 consecutive days. Separately, before acetic acid enema (aged 35 days), after modeling (aged 45 days) and after intervention (aged 53 days), the body mass, loose stool rate (LSR) and and the minimum volume threshold when abdominal withdrawal reflex (AWR) scored 3 were observed in the rats of each group. After intervention (aged 53 days), using HE and PAS staining, the morphology of duodenum was observed, the length of villus and the depth of crypt were measured, the ratio of the length of villus to the depth of crypt was calculated; and the numbers of mucosal intraepithelial lymphocytes (IELs) and goblet cells were counted. With ELISA adopted, the contents of γ-interferon (IFN-γ), interleukin-4 (IL-4) and secretory immunoglobulin A (sIgA) in duodenal mucosa of rats were detected. The proportion of T cell subsets in duodenal mucosa was detected using flow cytometry. The microvilli and tight junctions of duodenal mucosal epithelial cells were observed by transmission electron microscopy, and the integrity of duodenal mucosa observed by scanning electron microscopy.
RESULTS:
Compared with the normal group, for the rats in the model group, the body mass, the minimum volume threshold when AWR scored 3, the length of duodenal villus and the the ratio of the length of villus to the depth of crypt, as well as the proportion of CD8+ T subset were all reduced (P<0.01, P<0.05), the counts of goblet cells in duodenal mucosa decreased (P<0.01); LRS, the proportion of CD4+ T subset and CD4+/CD8+, as well as the contents of IFN-γ, IL-4 and sIgA in duodenal mucosa and IFN-γ/IL-4 were all elevated (P<0.01); and the numbers of IELs rose (P<0.01). The morphology of duodenal mucosa was irregular, the villi got shorter, sparse and scattered, with uneven density. The morphology of epithelial cells was destroyed and the tight junctions damaged, with larger spaces. When compared with the model group, in the moxibustion group, the body mass, the minimum volume threshold when AWR scored 3, the length of duodenal villus and the ratio of the length of villus to the depth of crypt, as well as the counts of goblet cells in duodenal mucosa increased (P<0.01); LRS, the proportion of CD4+ T subset, and CD4+/CD8+, as well as the contents of IFN-γ, IL-4 and sIgA in duodenal mucosa and IFN-γ/IL-4 were reduced (P<0.01); and the numbers of IELs was dropped (P<0.01). The morphology of duodenal mucosa was more regular, the villi were grew, got longer and arranged regularly, with even density. The morphology of epithelial cells was slightly destroyed, and the tight junctions partially damaged.
CONCLUSION
Moxibustion at "Tianshu" (ST25) and "Shangjuxu" (ST37) can reduce visceral hypersensitivity in IBS-D rats and relieve abdominal pain, diarrhea and other symptoms. Its effect mechanism may be related to the repair of small intestinal mucosal immune barrier and the improvement in the immune function in IBS-D.
Animals
;
Irritable Bowel Syndrome/immunology*
;
Rats
;
Moxibustion
;
Intestinal Mucosa/immunology*
;
Female
;
Diarrhea/therapy*
;
Intestine, Small/immunology*
;
Male
;
Humans
;
Rats, Sprague-Dawley
;
Disease Models, Animal
8.Clinical course, causes of worsening, and outcomes of severe ischemic stroke: A prospective multicenter cohort study.
Simiao WU ; Yanan WANG ; Ruozhen YUAN ; Meng LIU ; Xing HUA ; Linrui HUANG ; Fuqiang GUO ; Dongdong YANG ; Zuoxiao LI ; Bihua WU ; Chun WANG ; Jingfeng DUAN ; Tianjin LING ; Hao ZHANG ; Shihong ZHANG ; Bo WU ; Cairong ZHU ; Craig S ANDERSON ; Ming LIU
Chinese Medical Journal 2025;138(13):1578-1586
BACKGROUND:
Severe stroke has high rates of mortality and morbidity. This study aimed to investigate the clinical course, causes of worsening, and outcomes of severe ischemic stroke.
METHODS:
This prospective, multicenter cohort study enrolled adult patients admitted ≤30 days after ischemic stroke from nine hospitals in China between September 2017 and December 2019. Severe stroke was defined as a score of ≥15 on the National Institutes of Health Stroke Scale (NIHSS). Clinical worsening was defined as an increase of 4 in the NIHSS score from baseline. Unfavorable functional outcome was defined as a modified Rankin scale score ≥3 at 3 months and 1 year after stroke onset, respectively. We performed Logistic regression to explore baseline features and reperfusion therapies associated with clinical worsening and functional outcomes.
RESULTS:
Among 4201 patients enrolled, 854 patients (20.33%) had severe stroke on admission. Of 3347 patients without severe stroke on admission, 142 (4.24%) patients developed severe stroke in hospital. Of 854 patients with severe stroke on admission, 33.95% (290/854) experienced clinical worsening (median time from stroke onset: 43 h, Q1-Q3: 20-88 h), with brain edema (54.83% [159/290]) as the leading cause; 24.59% (210/854) of these patients died by 30 days, and 81.47% (677/831) and 78.44% (633/807) had unfavorable functional outcomes at 3 months and 1 year respectively. Reperfusion reduced the risk of worsening (adjusted odds ratio [OR]: 0.24, 95% confidence interval [CI]: 0.12-0.49, P <0.01), 30-day death (adjusted OR: 0.22, 95% CI: 0.11-0.41, P <0.01), and unfavorable functional outcomes at 3 months (adjusted OR: 0.24, 95% CI: 0.08-0.68, P <0.01) and 1 year (adjusted OR: 0.17, 95% CI: 0.06-0.50, P <0.01).
CONCLUSIONS:
Approximately one-fifth of patients with ischemic stroke had severe neurological deficits on admission. Clinical worsening mainly occurred in the first 3 to 4 days after stroke onset, with brain edema as the leading cause of worsening. Reperfusion reduced the risk of clinical worsening and improved functional outcomes.
REGISTRATION
ClinicalTrials.gov , NCT03222024.
Humans
;
Male
;
Female
;
Prospective Studies
;
Ischemic Stroke/mortality*
;
Aged
;
Middle Aged
;
Aged, 80 and over
;
Stroke
;
Brain Ischemia
9.Prognostic value of ultrasound carotid plaque length in patients with coronary artery disease.
Wendong TANG ; Zhichao XU ; Tingfang ZHU ; Yawei YANG ; Jian NA ; Wei ZHANG ; Liang CHEN ; Zongjun LIU ; Ming FAN ; Zhifu GUO ; Xianxian ZHAO ; Yuan BAI ; Bili ZHANG ; Hailing ZHANG ; Pan LI
Chinese Medical Journal 2025;138(14):1755-1757
10.Targeting WEE1: a rising therapeutic strategy for hematologic malignancies.
Hao-Bo LI ; Thekra KHUSHAFA ; Chao-Ying YANG ; Li-Ming ZHU ; Xing SUN ; Ling NIE ; Jing LIU
Acta Physiologica Sinica 2025;77(5):839-854
Hematologic malignancies, including leukemia, lymphoma, and multiple myeloma, are hazardous diseases characterized by the uncontrolled proliferation of cancer cells. Dysregulated cell cycle resulting from genetic and epigenetic abnormalities constitutes one of the central events. Importantly, cyclin-dependent kinases (CDKs), complexed with their functional partner cyclins, play dominating roles in cell cycle control. Yet, efforts in translating CDK inhibitors into clinical benefits have demonstrated disappointing outcomes. Recently, mounting evidence highlights the emerging significance of WEE1 G2 checkpoint kinase (WEE1) to modulate CDK activity, and correspondingly, a variety of therapeutic inhibitors have been developed to achieve clinical benefits. Thus, WEE1 may become a promising target to modulate the abnormal cell cycle. However, its function in hematologic diseases remains poorly elucidated. In this review, focusing on hematologic malignancies, we describe the biological structure of WEE1, emphasize the latest reported function of WEE1 in the carcinogenesis, progression, as well as prognosis, and finally summarize the therapeutic strategies by targeting WEE1.
Humans
;
Protein-Tyrosine Kinases/physiology*
;
Hematologic Neoplasms/drug therapy*
;
Cell Cycle Proteins/antagonists & inhibitors*
;
Nuclear Proteins/antagonists & inhibitors*
;
Cyclin-Dependent Kinases
;
Molecular Targeted Therapy
;
Animals

Result Analysis
Print
Save
E-mail