1.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
2.Processing History and Modern Research of Jianghuanglian: A Review
Ying LI ; Yun WANG ; Zhe JIA ; Lin YAN ; Min JIN ; Cun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):275-282
Jianghuanglian is one of the representative processed products of Coptidis Rhizoma for treating cold syndrome with drugs of heat nature, and ginger is used to restrict the bitter cold of Coptidis Rhizoma, which can be traced back to Bojifang, and it is suitable for stagnation of damp-heat in middle-jiao, cold-heat mutual knots and other symptoms. Jianghuanglian retains the alkaloids, phenylpropanoids and flavonoids of Coptidis Rhizoma, and also introduces gingerol components such as 6-gingerol in ginger, which has pharmacological activities such as anti-inflammatory, antibacterial, anti-tumor, and improving gastrointestinal function. The 2020 edition of Chinese Pharmacopoeia and many local processing specifications have included the traditional processing process and quality standards of Jianghuanglian, but the specific process parameters and quality standards are incomplete, which limits the production and clinical application of this processed product. By summarizing the processing history, process research, quality evaluation, pharmacodynamic and medicinal property changes and application of Jianghuanglian in the past 20 years, there are differences in the processing methods and standards in various provinces and cities, which are mainly reflected in the preparation method, dosage, processing process and quantitative standards of ginger juice. In addition, there are also certain differences in the changes of the main components of Jianghuanglian prepared from ginger or dried ginger, as well as their efficacy and medicinal properties. The research on the processing process of Jianghuanglian plays an important role in improving its quality standards, and this review can provide a reference for improving the quality evaluation system of Jianghuanglian.
3.Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism
De-Man ZHANG ; Chang-Ling WEI ; Yuan-Ting ZHANG ; Yu JIN ; Xiao-Han HUANG ; Min-Yan ZHENG ; Xue LI
Progress in Biochemistry and Biophysics 2025;52(6):1362-1372
ObjectiveTo explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway. Methods60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp,5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes. ResultsGroup A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend. ConclusionThe aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway.
4.Influence mechanism of peer attachment on school adaptation of migrant children: the role of psychological resilience and sense of security
Xiaoyan ZHAO ; Min JIN ; Li HAN ; Birui LI ; Peng WANG ; Zanheng ZOU
Sichuan Mental Health 2025;38(3):273-278
BackgroundMigrant children face many challenges in the process of social change and adaptation to a new environment, especially in school adaptation. Studies have shown that peer attachment plays a vital role in the social adaptation of children and adolescents, while psychological resilience and sense of security, as important psychological resources, also play a moderating and mediating role in individuals' coping with environmental changes. However, there is a lack of systematic research on how peer attachment affects the school adaptation of migrant children through psychological resilience and whether this process is moderated by sense of security. ObjectiveTo explore the relationship between peer attachment and school adaptation of migrant children and to examine the path of psychological resilience and sense of security in it, so as to provide references for improving the school adaptation of migrant children. MethodsUsing cluster sampling method, 695 migrant children in grades 4 to 6 of a primary school in an urban-rural fringe area of Sichuan Province were selected from April 1 to 30, 2022. Assessments were conducted using Revised Inventory for Parent and Peer Attachment (IPPA-R), Resilience Scale for Chinese Adolescents (RSCA), Scale of Sense of Security of Children Left Behind (SSSCLB) and Scale of School Adjustment of Student (SSAS). Process 4.1 was used to examine the role of psychological resilience and sense of security. ResultsA total of 631 (90.79%) valid questionnaires were gathered. There were significant positive correlations among IPPA-R peer attachment subscale score, RSCA score, SSSCLB score and SSAS score (r=0.160~0.600, P<0.01). Peer attachment had a significant positive predictive effect on the school adaptation (β=0.178, P<0.01) and psychological resilience (β=0.518, P<0.01) of migrant children. Psychological resilience had positive predictive effect on the school adaptation (β=0.467, P<0.01). Psychological resilience played a partial mediating role in the relationship between peer attachment and school adaptation, with the mediating effect value was 0.242 (95% CI: 0.184~0.302), accounting for 57.62% of the total effect. Moreover, the interaction term between psychological resilience and sense of security had a significant predictive effect on school adaptation (β=0.103, P<0.01). ConclusionThe psychological resilience of migrant children plays a partial mediating role in the relationship between peer attachment and school adaptation, and the status of sense of security can moderate the relationship between psychological resilience and school adaptation of migrant children.
5.Effect of comorbidity for patients with non-small cell lung cancer on exercise tolerance and cardiopulmonary function: A propensity score matching study
Xinyu WANG ; Jin LI ; Min GAO ; Xin RAN ; Yiman TONG ; Wei CHEN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1115-1120
Objective To observe the effect of comorbidity for patients with non-small cell lung cancer (NSCLC) on exercise tolerance and cardiopulmonary function. Methods NSCLC patients who underwent cardiopulmonary exercise testing (CPET) before surgery were retrospectively included. According to the Charlson comorbidity index (CCI) score, patients were divided into two groups: a CCI≥3 group and a CCI<3 group. The patients were matched with a ratio of 1 : 1 by propensity score matching according to the age, body mass index, sex, smoking history, exercise habits, pathological stage and type of surgery. After matching, CPET indexes were compared between the two groups to explore the differences in exercise tolerance and cardiopulmonary function. Results A total of 276 patients were included before matching. After matching, 56 patients were enrolled with 28 patients in each group, including 38 (67.9%) males and 18 (32.1%) females with an average age of (70.7±6.8) years. Compared with the CCI<3 group, work rate at peak (WR peak), WR peak/predicted value (WR peak%), kilogram oxygen uptake at anaerobic threshold (VO2/kg AT), VO2/kg peak, VO2/kg peak%, peak carbon dioxide output, the minute ventilation to carbon dioxide production slope, O2 pulse peak and O2 pulse peak% of CCI≥3 group were statistically different (P<0.05). Among them, the rate of postoperative pulmonary complication in the CCI≥3 group was higher than that in the CCI<3 group (60.7% vs. 32.1%, P=0.032). Conclusion In the NSCLC patients, exercise tolerance and cardiopulmonary function decreased in patients with CCI≥3 compared with those with CCI<3. CPET can provide an objective basis for risk assessment in patients with comorbidity scored by CCI for pulmonary resection.
6.Prediction of Pulmonary Nodule Progression Based on Multi-modal Data Fusion of CCNet-DGNN Model
Lehua YU ; Yehui PENG ; Wei YANG ; Xinghua XIANG ; Rui LIU ; Xiongjun ZHAO ; Maolan AYIDANA ; Yue LI ; Wenyuan XU ; Min JIN ; Shaoliang PENG ; Baojin HUA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):135-143
ObjectiveThis study aims to develop and validate a novel multimodal predictive model, termed criss-cross network(CCNet)-directed graph neural network(DGNN)(CGN), for accurate assessment of pulmonary nodule progression in high-risk individuals for lung cancer, by integrating longitudinal chest computed tomography(CT) imaging with both traditional Chinese and western clinical evaluation data. MethodsA cohort of 4 432 patients with pulmonary nodules was retrospectively analyzed. A twin CCNet was employed to extract spatiotemporal representations from paired sequential CT scans. Structured clinical assessment and imaging-derived features were encoded via a multilayer perceptron, and a similarity-based alignment strategy was adopted to harmonize multimodal imaging features across temporal dimensions. Subsequently, a DGNN was constructed to integrate heterogeneous features, where nodes represented modality-specific embeddings and edges denoted inter-modal information flow. Finally, model optimization was performed using a joint loss function combining cross-entropy and cosine similarity loss, facilitating robust classification of nodule progression status. ResultsThe proposed CGN model demonstrated superior predictive performance on the held-out test set, achieving an area under the receiver operating characteristic curve(AUC) of 0.830, accuracy of 0.843, sensitivity of 0.657, specificity of 0.712, Cohen's Kappa of 0.417, and F1 score of 0.544. Compared with unimodal baselines, the CGN model yielded a 36%-48% relative improvement in AUC. Ablation studies revealed a 2%-22% increase in AUC when compared to simplified architectures lacking key components, substantiating the efficacy of the proposed multimodal fusion strategy and modular design. Incorporation of traditional Chinese medicine (TCM)-specific symptomatology led to an additional 5% improvement in AUC, underscoring the complementary value of integrating TCM and western clinical data. Through gradient-weighted activation mapping visualization analysis, it was found that the model's attention predominantly focused on nodule regions and effectively captured dynamic associations between clinical data and imaging-derived features. ConclusionThe CGN model, by synergistically combining cross-attention encoding with directed graph-based feature integration, enables effective alignment and fusion of heterogeneous multimodal data. The incorporation of both TCM and western clinical information facilitates complementary feature enrichment, thereby enhancing predictive accuracy for pulmonary nodule progression. This approach holds significant potential for supporting intelligent risk stratification and personalized surveillance strategies in lung cancer prevention.
7.Research progress on combined immunotherapy with PD-1/PD-L1 inhibitors and anti-VEGF agents in advanced hepatocellular carcinoma
Yan-Ni HUANG ; Xue-Ling LAN ; Min-Min ZHU ; Jin-Bin WEI ; Yan LI ; Min DONG
Chinese Pharmacological Bulletin 2024;40(8):1429-1436
Hepatocellular carcinoma(HCC)is one of the most common malignant tumors globally.Programmed death protein-1(PD-1)/programmed death protein ligand-1(PD-L1)inhibitors promote the reactivation of anti-tumor immune response by bloc-king the negative modulatory signaling pathway of T cells'activa-tion and inhibiting the immune escape pathway of tumor cells.PD-1/PD-L1 inhibitors become a novel therapeutic strategy to treat HCC.However,long-term clinical outcomes show that HCC patients treated with anti-PD-1/PD-L1 monotherapy still have high rates of recurrence and metastasis.Combination immuno-therapy is a novel therapeutic strategy to treat advanced HCC pa-tients,among which PD-1/PD-L1 inhibitors in combination with anti-vascular endothelial growth factor(VEGF)agents have showed promising efficacy and better safety.PD-1/PD-L1 inhib-itors plus anti-VEGF agents combined therapy inhibit the growth of hepatoma cells by participating in the cancer immunity cycle pathway.This review focuses on the research progress of PD-1/PD-L1 inhibitors,anti-VEGF agents and their combined therapy in the clinical treatment of HCC.
8.Effect of berberine on regulating NF-κB p65/TGF-β1/CTGF signaling pathway in reducing renal fibrosis injury in mice
Guang-Yao LI ; Jia-Min LIANG ; Meng-Tong JIN ; Duan XI ; Peng LIU ; Peng WANG ; Rui-Hua WANG ; Qing-Qing LIU
Chinese Pharmacological Bulletin 2024;40(11):2042-2047
Aim To investigate the protective effect of berberine(BBR)on mice with unilateral ureteral obstr-uction(UUO)and explore its mechanism.Methods C57BL/6 mice were randomly divided into the sham group,UUO group,and BBR treatment groups(50,100 and 200 mg·kg-1),with eight mice in each group.Except the sham group,the other groups were subjected to left ureteral ligation to establish the UUO model.Af-ter modeling,the mice in the sham and UUO groups were fed normal saline,and the mice in the BBR treat-ment groups were fed(50,100,200)mg·kg-1 BBR by gavage for 14 days,respectively.Biochemical analy-zer was employed to detect the levels of serum creati-nine(Scr)and blood urea nitrogen(BUN).HE,Mas-son,TUNEL and immunohistochemical staining were used to observe the pathological changes of renal tis-sue.ELISA was employed to detect the expression of pro-inflammatory cytokines in renal tissue homogenate.Western blot was used to detect the protein levels of NF-κB p65,TGF-β1 and CTGF in mouse kidney.Re-sults Compared with the UUO group,the levels of Scr and BUN in the BBR group were significantly reduced.Renal injury and interstitial fibrosis were alleviated.The expression of pro-inflammatory cytokines decreased in kidney.The expression of NF-κB p65,TGF-β1 and CTGF decreased.All results showed some degree of dose dependence.Conclusion Berberine has a sig-nificant protective effect on unilateral ureteral obstruc-tion mice,and the mechanism may be that BBR has the potential to inhibit NF-κB p65/TGF-β1/CTGF signa-ling pathway,thus reducing renal inflammation and fi-brosis.
9.Clinical study of electroacupuncture therapy on postoperative rehabilitation of patients with knee fractures
Qiong-Ying LI ; Si-Min LI ; Jin-Xia DU
China Journal of Orthopaedics and Traumatology 2024;37(4):368-373
Objective To investigate the effect of electroacupuncture therapy on postoperative rehabilitation training of patients with knee fractures.Methods Patients with knee fractures from July 2020 to July 2021 were randomly assigned to ei-ther the experimental group or a control group according to the double-blind principle.Both groups were given surgical treat-ment and postoperative conventional rehabilitation training.There were 40 cases in the control group,including 27 males and 13 females;the age ranged from 20 to 66 years old with an average of(36.46±6.29)years old,continuous passive motion(CPM)training was performed after operation.There were 40 patients in the experimental group,including 24 males and 16 females.The age ranged from 21 to 68 years old with an average of(37.62±7.08)years old,on the basis of the control group,electroacupuncture was given.After 4 weeks of intervention,the excellent rate of knee function score,visual analogue scale(VAS)before and after intervention,serum pain mediators,prostaglandin E(PGE),substance P(SP),bradykinin(BK),joint range of motion and quality of life were compared between the two groups.Results After 4 weeks of intervention,the Ras-mussen score for knee function in the experimental group(24.15±1.36)scores was higher than that in the control group(21.25±2.20)scores(P<0.001).The VAS in the experimental group(2.04±0.51)scores was lower than that in the control group(2.78±0.60)after 4 weeks of intervention(P<0.05).Serum PGE(2.25±0.37)mg·L-1,SP(4.43±1.05)ng·ml-1,BK(2.67±0.68)ng·ml-1 in the experimental group were lower than those in the control group(3.91±0.44)mg·L-1,(6.12±1.37)ng·ml-1,(4.55±1.03)ng·ml-1 after4 weeks of intervention(P<0.05);in the experimental group,the active knee flexion angle of the knee joint was(108.63±9.76)°,the active knee extension angle(-2.46±0.70)°,passive knee flexion angle(116.83± 6.57)°,passive knee extension angle(1.44±0.38)° were better than control group(100.24±8.15)°,(-3.51±0.86)°,(111.04± 8.22)°,(0.78±0.24)°(P<0.05);the experimental group's psychological score(73.12±5.08),physiological score(72.26± 5.89),social function score(72.57±4.23),overall health score(75.12±5.16)were higher than that of the control group(68.49±4.13),(68.13±5.27),(69.04±3.42),and(70.88±3.97)respectvely(P<0.05).Conclusion Electroacupuncture com-bined with CPM training after knee fracture surgery can significantly improve knee function and range of motion,reduce pain levels,and also improve quality of life and reduce the incidence of adverse events.
10.A case of acute inferior myocardial infarction and cardiogenic shock with abnormal right coronary artery
Yu-Hai ZOU ; Ai-Min LI ; Jian-Xin HE ; Jin-Xia ZHANG
Chinese Journal of Interventional Cardiology 2024;32(9):538-540
Aberration of the right coronary artery from the left anterior descending is a very rare congenital anomaly.The anomalous the right coronary artery,as a branch of the septal branch,has not been reported clinically.This article reports such rare case.A 52-year-old female was admitted due to"sudden chest pain and confusion for 4 hours".The ECG showed that the ST-segment of leads(V1-V4,V3R,V4R and V5R)were elevated about 0.1-0.3 mVThe blood pressure was 63/53 mmHg.She was diagnosed as cardiogenic shock second to acute anterior and right ventricular ST-segment elevation myocardial infarction.Emergency coronary angiography was performed after intra-aortic ballon pump was implanted to assist circulation.During the treatment of the culprit vessel,it was accidentally found that the right coronary artery,as a branch vessel,originated from the ostium of the second septal branch of the anterior descending artery.

Result Analysis
Print
Save
E-mail