1.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
2.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
3.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
4.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
5.Construction of A Nomogram Prognostic Model Based on Pretreatment Inflammatory Indicator for Esophageal Squamous Cell Carcinoma Patients Treated with Radical Radiotherapy
Shenbo FU ; Long JIN ; Jing LIANG ; Junjun GUO ; Yu CHE ; Chenyang LI ; Yong CHEN
Cancer Research on Prevention and Treatment 2025;52(2):142-150
Objective To describe the significance of the pretreatment inflammatory indicators in predicting the prognosis of patients with esophageal squamous cell carcinoma (ESCC) after undergoing radical radiotherapy. Methods The data of 246 ESCC patients who underwent radical radiotherapy were retrospectively collected. Receiver operating characteristic (ROC) curves were drawn to determine the optimal cutoff values for platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR), and systemic immune-inflammation index (SII). The Kaplan-Meier method was used for survival analysis. We conducted univariate and multivariate analyses by using the Cox proportional risk regression model. Software R (version 4.2.0) was used to create the nomogram of prognostic factors. Results The results of the ROC curve analysis showed that the optimal cutoff values of PLR, NLR, and SII were 146.06, 2.67, and 493.97, respectively. The overall response rates were 77.6% and 64.5% in the low and high NLR groups, respectively (P<0.05). The results of the Kaplan-Meier survival analysis revealed that the prognosis of patients in the low PLR, NLR, and SII group was better than that of patients in the high PLR, NLR, and SII group (all P<0.05). The results of the multivariate Cox regression analysis showed that gender, treatment modalities, T stage, and NLR were independent factors affecting the overall survival (OS). In addition, T stage and NLR were independent factors affecting the progression-free survival (PFS) (all P<0.05). The nomogram models of OS and PFS prediction were established based on multivariate analysis. The C-index values were 0.703 and 0.668. The calibration curves showed excellent consistency between the predicted and observed OS and PFS. Conclusion The pretreatment values of PLR, NLR, and SII are correlated with the prognosis of patients with ESCC who underwent radical radiotherapy. Moreover, NLR is an independent factor affecting the OS and PFS of ESCC patients. The NLR-based nomogram model has a good predictive ability.
6.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
7.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
8.Correlation between depressive symptom and traditional Chinese medicine constitution among school aged children and adolescents
Chinese Journal of School Health 2025;46(9):1222-1225
Objective:
To explore the correlation between traditional Chinese medicine (TCM) constitution and depressive symptom among school aged children and adolescents, so as to provide evidences for informing constitution based regulation and prevention of depressive symptom.
Methods:
From June to December 2024, a total of 4 729 students aged 6-14 were recruited by cluster random sampling from 10 primary schools in Baoding (Hebei Province), Heze and Liaocheng (Shandong Province). General information, TCM constitution and depressive symptom were collected. Restricted cubic spline (RCS) models were used to analyze related factors and threshold effects of depressive symptom. Binary Logistic regression was applied to examine the association between depressive symptom and TCM constitution, with subgroup analyses conducted.
Results:
The detection rate of depressive symptom among the included children and adolescents was 25.82%. RCS analyses indicated non linear associations between depressive symptom and age (inflection point at 10 years old), bedtime (inflection point at 22:00), and wake up time (inflection point at 6:30 ) (all P non linearity <0.01). Linear associations were observed with body mass index (BMI) and sleep duration (all P non linearity > 0.05 ). After adjusting for covariates such as age, BMI and sleep status, binary Logistic regression analyses showed that Yin deficient constitution ( OR =1.26, 95% CI =1.09-1.45) and Phlegm-dampness constitution ( OR =1.42, 95% CI =1.11-1.82) were significantly associated with depressive symptom among children and adolescents (all P <0.05).
Conclusions
Depressive symptom among school aged children and adolescents is primarily associated with Yin deficiency and Phlegm dampness constitutions in TCM constitution. Active attention should be paid to susceptible TCM constitution among children and adolescents. Targeted health guidance and interventions should be implemented to improve TCM constitution health status for preventing the occurrence of depressive symptom.
9.Exploring effect of MANF in cholestatic liver injury in mice induced by rifampicin
Shi-Guo CAO ; Meng-Xue HUANG ; Liu-Fang QU ; Yang LI ; Jiang-Long HONG ; Gang CHEN ; Wei-Ping ZHANG
Chinese Pharmacological Bulletin 2024;40(8):1546-1551
Aim To investigate the involvement of mesencephalic astrocyte-derived neurotrophic factor(MANF)in rifampicin(RFP)-induced cholestatic liv-er injury.Methods We investigated the impact of MANF gene deletion on rifampicin-induced BAT ex-pression in mice by the MANF gene knockout mouse model.We investigated the influence of MANF knock-down on nuclear factor erythroid 2-related factor 2(Nrf2)in HepG2 cells by the MANF knockdown cell model.Results Compared with the wild-type(WT)mice,the mRNA and protein expression levels of bile salt export pump(BSEP)and multidrug-resistant asso-ciated protein4(MRP4)significantly increased in WT mice treated with RFP.However,compared to the WT mice treated with RFP,the mRNA and protein expres-sion levels of BSEP,Multidrug resistance protein 1(MDR1),multidrug resistance associated proteins 2/3/4(MRP2/3/4),and organic solute transport pro-teins α(OST α)were significantly reduced.In cell experiments we found that MANF knockdown weakened the expression of Nrf2 and its nuclear translocation by RFP.Conclusion MANF may regulate adaptive BAT expression by modulating Nrf2 expression,thereby pla-ying a protective role in RFP-induced liver injury.
10.Immune Reconstitution after BTKi Treatment in Chronic Lymphocytic Leukemia
Yuan-Li WANG ; Pei-Xia TANG ; Kai-Li CHEN ; Guang-Yao GUO ; Jin-Lan LONG ; Yang-Qing ZOU ; Hong-Yu LIANG ; Zhen-Shu XU
Journal of Experimental Hematology 2024;32(1):1-5
Objective:To analyze the immune reconstitution after BTKi treatment in patients with chronic lymphocytic leukemia(CLL).Methods:The clinical and laboratorial data of 59 CLL patients admitted from January 2017 to March 2022 in Fujian Medical University Union Hospital were collected and analyzed retrospectively.Results:The median age of 59 CLL patients was 60.5(36-78).After one year of BTKi treatment,the CLL clones(CD5+/CD19+)of 51 cases(86.4%)were significantly reduced,in which the number of cloned-B cells decreased significantly from(46±6.1)× 109/L to(2.3±0.4)× 109/L(P=0.0013).But there was no significant change in the number of non-cloned B cells(CD19+minus CD5+/CD19+).After BTKi treatment,IgA increased significantly from(0.75±0.09)g/L to(1.31±0.1)g/L(P<0.001),while IgG and IgM decreased from(8.1±0.2)g/L and(0.52±0.6)g/L to(7.1±0.1)g/L and(0.47±0.1)g/L,respectively(P<0.001,P=0.002).BTKi treatment resulted in a significant change in T cell subpopulation of CLL patients,which manifested as both a decrease in total number of T cells from(2.1±0.1)× 109/L to(1.6±0.4)× 109/L and NK/T cells from(0.11±0.1)× 109/L to(0.07±0.01)× 109/L(P=0.042,P=0.038),both an increase in number of CD4+cells from(0.15±6.1)× 109/L to(0.19±0.4)× 109/L and CD8+cells from(0.27±0.01)× 109/L to(0.41±0.08)× 109/L(both P<0.001).BTKi treatment also up-regulated the expression of interleukin(IL)-2 while down-regulated IL-4 and interferon(IFN)-γ.However,the expression of IL-6,IL-10,and tumor necrosis factor(TNF)-α did not change significantly.BTKi treatment could also restored the diversity of TCR and BCR in CLL patients,especially obviously in those patients with complete remission(CR)than those with partial remission(PR).Before and after BTKi treatment,Shannon index of TCR in patients with CR was 0.02±0.008 and 0.14±0.001(P<0.001),while in patients with PR was 0.01±0.03 and 0.05±0.02(P>0.05),respectively.Shannon index of BCR in patients with CR was 0.19±0.003 and 0.33±0.15(P<0.001),while in patients with PR was 0.15±0.009 and 0.23±0.18(P<0.05),respectively.Conclusions:BTKi treatment can shrink the clone size in CLL patients,promote the expression of IgA,increase the number of functional T cells,and regulate the secretion of cytokines such as IL-2,IL-4,and IFN-γ.BTKi also promote the recovery of diversity of TCR and BCR.BTKi treatment contributes to the reconstitution of immune function in CLL patients.


Result Analysis
Print
Save
E-mail