1.Clinical Efficacy and Mechanism of Bupi Qingfei Prescription in Treating Stable Bronchiectasis
Zi YANG ; Guangsen LI ; Bing WANG ; Bo XU ; Jianxin WANG ; Sheng CAO ; Xinyan CHEN ; Xia SHI ; Qing MIAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):162-169
ObjectiveTo explore the clinical efficacy and mechanism of Bupi Qingfei prescription (BPQF) in treating stable bronchiectasis in the patients with syndromes of lung-spleen Qi deficiency and phlegm-heat accumulation in the lungs. MethodsA randomized, double-blind, placebo-controlled trial was conducted. Patients were randomized into BPQF and placebo control (PC) groups. On the basis of conventional Western medicine treatment, the BPQF granules and placebo were respectively administered at 10 g each time, twice a day, for a course of 24 weeks. The TCM symptom scores, Quality of Life Questionnaire for Bronchiectasis (QOL-B) scores, lung function indicators, T lymphocyte subsets, level of inflammatory factors in the sputum, level of neutrophil elastase (NE) in the sputum, and occurrence of adverse reactions were observed before and after treatment in the two groups. ResultsA total of 64 patients completed the study, encompassing 32 in the BPQF group and 32 in the PC group. After treatment, the BPQF group showed decreased TCM symptom scores (P<0.01), increased QOL-B scores (P<0.01), and declined levels of tumor necrosis factor (TNF)-α and NE (P<0.05, P<0.01). The PC group showed decreased TCM symptom (except spleen deficiency) scores (P<0.01), increased the QOL-B health cognition and respiratory symptom domain scores (P<0.05, P<0.01), and a declined TNF-α level (P<0.01). Moreover, the BPQF group had lower TCM symptom (except chest tightness) scores (P<0.05, P<0.01), higher QOL-B (except treatment burden) scores (P<0.05, P<0.01), and lower levels of interleukin-6 and TNF-α (P<0.05) than the PC group. Neither group showed serious adverse reactions during the treatment process. ConclusionBPQF can ameliorate the clinical symptoms of stable bronchiectasis patients who have lung-spleen Qi deficiency or phlegm-heat accumulation in the lungs by regulating the immune balance and inhibiting airway inflammatory responses.
2.Erjingwan Alleviate Inflammatory Response and Apoptosis in Skeletal Muscle Cells of Sarcopenia via SIRT1/Nrf2/HO-1 Signaling Pathway
Long SHI ; Yang LI ; Hongyu YAN ; Tianle ZHOU ; Zhiwen ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):57-66
ObjectiveTo investigate the effects of the classical Chinese medicine compound prescription Erjingwan on the inflammatory response and apoptosis of skeletal muscle cells in a mouse model of sarcopenia and decipher the mechanism based on the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. MethodsForty C57/BL6 male mice were randomized into a control group, a model group, and groups with different doses of Erjingwan (8,16,32 g·kg-1). The mouse model of sarcopenia was established by D-gal-induced skeletal muscle senescence. The body weight and grip strength of mice treated with different doses of Erjingwan were examined to evaluate their physiological functions. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the pathological changes and fibrosis in the skeletal muscle of mice. Enzyme-linked immunosorbent assay (ELISA) was adopted to determine the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum samples of mice, and biochemical tests were conducted to quantify the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in the serum. The protein and mRNA levels of SIRT1, Nrf2, B-cell lymphoma (Bcl-2), and Bcl-2-associated X protein (Bax) were determined by Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), respectively. ResultsAfter 4 weeks of drug intervention, the model group exhibited significant reductions in body weight and grip strength (P0.01) compared with the control group. Compared with the model group, all doses of Erjingwan increased the body weight in mice at week 8 (P0.01) and grip strength from week 6 (P0.01). HE staining revealed clear muscle fiber structure in the control group, muscle fiber rupture and atrophy in the model group, and dose-dependent repair of muscle fiber structure in the Erjingwan groups. Masson staining showed minimal collagen fibers and mild fibrosis in the control group, collagen fiber proliferation and severe fibrosis in the model group, and collagen proliferation with dose-dependent inhibition of fibrosis in the Erjingwan groups. ELISA results showed that serum levels of TNF-α and IL-6 were elevated in the model group compared with those in the control group (P0.01). After intervention, the low-dose Erjingwan group exhibited a decreased TNF-α level (P0.05), while the medium and high-dose groups showed decreases in both TNF-α and IL-6 levels (P0.01). Biochemical assays revealed that the model group had decreased SOD and GSH levels (P0.01) and an increased MDA level (P0.01) compared with the control group. The medium and high-dose Erjingwan groups exhibited increases in SOD and GSH levels (P0.01) and decreases in MDA level (P0.01), compared with the model group. WB and Real-time PCR results showed that compared with the control group, the model group presented down-regulated protein and mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 in the muscle tissue (P0.01) and up-regulated protein and mRNA levels of Bax (P0.01). Compared with the model group, Erjingwan at different doses up-regulated the protein levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01) and down-regulated the protein and mRNA levels of Bax (P0.01) in the muscle tissue. Low-dose Erjingwan elevated the mRNA levels of Nrf2 and HO-1 (P0.05, P0.01), and medium and high-dose Erjingwan up-regulated the mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01). ConclusionErjingwan reduced the content of inflammatory factors in skeletal muscle cells, improved the antioxidant capacity, and attenuated pathological changes and fibrosis in the muscle of the mouse model of sarcopenia by regulating the SIRT1/Nrf2/HO-1 pathway, inflammatory response, and apoptosis network.
3.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
4.Erjingwan Alleviate Inflammatory Response and Apoptosis in Skeletal Muscle Cells of Sarcopenia via SIRT1/Nrf2/HO-1 Signaling Pathway
Long SHI ; Yang LI ; Hongyu YAN ; Tianle ZHOU ; Zhiwen ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):57-66
ObjectiveTo investigate the effects of the classical Chinese medicine compound prescription Erjingwan on the inflammatory response and apoptosis of skeletal muscle cells in a mouse model of sarcopenia and decipher the mechanism based on the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. MethodsForty C57/BL6 male mice were randomized into a control group, a model group, and groups with different doses of Erjingwan (8,16,32 g·kg-1). The mouse model of sarcopenia was established by D-gal-induced skeletal muscle senescence. The body weight and grip strength of mice treated with different doses of Erjingwan were examined to evaluate their physiological functions. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the pathological changes and fibrosis in the skeletal muscle of mice. Enzyme-linked immunosorbent assay (ELISA) was adopted to determine the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum samples of mice, and biochemical tests were conducted to quantify the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in the serum. The protein and mRNA levels of SIRT1, Nrf2, B-cell lymphoma (Bcl-2), and Bcl-2-associated X protein (Bax) were determined by Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), respectively. ResultsAfter 4 weeks of drug intervention, the model group exhibited significant reductions in body weight and grip strength (P0.01) compared with the control group. Compared with the model group, all doses of Erjingwan increased the body weight in mice at week 8 (P0.01) and grip strength from week 6 (P0.01). HE staining revealed clear muscle fiber structure in the control group, muscle fiber rupture and atrophy in the model group, and dose-dependent repair of muscle fiber structure in the Erjingwan groups. Masson staining showed minimal collagen fibers and mild fibrosis in the control group, collagen fiber proliferation and severe fibrosis in the model group, and collagen proliferation with dose-dependent inhibition of fibrosis in the Erjingwan groups. ELISA results showed that serum levels of TNF-α and IL-6 were elevated in the model group compared with those in the control group (P0.01). After intervention, the low-dose Erjingwan group exhibited a decreased TNF-α level (P0.05), while the medium and high-dose groups showed decreases in both TNF-α and IL-6 levels (P0.01). Biochemical assays revealed that the model group had decreased SOD and GSH levels (P0.01) and an increased MDA level (P0.01) compared with the control group. The medium and high-dose Erjingwan groups exhibited increases in SOD and GSH levels (P0.01) and decreases in MDA level (P0.01), compared with the model group. WB and Real-time PCR results showed that compared with the control group, the model group presented down-regulated protein and mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 in the muscle tissue (P0.01) and up-regulated protein and mRNA levels of Bax (P0.01). Compared with the model group, Erjingwan at different doses up-regulated the protein levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01) and down-regulated the protein and mRNA levels of Bax (P0.01) in the muscle tissue. Low-dose Erjingwan elevated the mRNA levels of Nrf2 and HO-1 (P0.05, P0.01), and medium and high-dose Erjingwan up-regulated the mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01). ConclusionErjingwan reduced the content of inflammatory factors in skeletal muscle cells, improved the antioxidant capacity, and attenuated pathological changes and fibrosis in the muscle of the mouse model of sarcopenia by regulating the SIRT1/Nrf2/HO-1 pathway, inflammatory response, and apoptosis network.
5.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
6.Epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome in Zhejiang Province
LÜ ; Jing ; XU Xinying ; QIAO Yingyi ; SHI Xinglong ; YUE Fang ; LIU Ying ; CHENG Chuanlong ; ZHANG Yuqi ; SUN Jimin ; LI Xiujun
Journal of Preventive Medicine 2026;38(1):10-14
Objective:
To analyze the epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome (SFTS) in Zhejiang Province from 2019 to 2023, so as to provide the reference for strengthening SFTS prevention and control.
Methods:
Data on laboratory-confirmed SFTS cases in Zhejiang Province from 2019 to 2023 were collected through the Infectious Disease Reporting Information System of Chinese Disease Prevention and Control Information System. Meteorological data, geographic environment and socioeconomic factors during the same period were collected from the fifth-generation European Centre for Medium-Range Weather Forecasts, Geospatial Data Cloud, and Zhejiang Statistical Yearbook, respectively. Descriptive epidemiological methods were used to analyze the epidemiological characteristics of SFTS from 2019 to 2023, and a Bayesian spatio-temporal model was constructed to analyze the influencing factors of SFTS incidence.
Results:
A total of 578 SFTS cases were reported in Zhejiang Province from 2019 to 2023, with an annual average incidence of 0.23/105. The peak period was from May to July, accounting for 52.60%. There were 309 males and 269 females, with a male-to-female ratio of 1.15∶1. The cases were mainly aged 50-<80 years, farmers, and in rural areas, accounting for 82.53%, 77.34%, and 75.43%, respectively. Taizhou City and Shaoxing City reported more SFTS cases, while Shaoxing City and Zhoushan City had higher annual average incidences of SFTS. The Bayesian spatio-temporal interaction model showed good goodness of fit. The results showed that mean temperature (RR=1.626, 95%CI: 1.111-2.378) and mean wind speed (RR=1.814, 95%CI: 1.321-2.492) were positively correlated with SFTS risk, while altitude (RR=0.432, 95%CI: 0.230-0.829) and population density (RR=0.443, 95%CI: 0.207-0.964) were negatively correlated with SFTS risk.
Conclusions
SFTS in Zhejiang Province peaks from May to July. Middle-aged and elderly people and farmers are high-risk populations. Taizhou City, Shaoxing City, and Zhoushan City are high-incidence areas. Mean temperature, mean wind speed, altitude, and population density can all affect the risk of SFTS incidence.
7.Proteomic Analysis of Danlou Tablet in Improving Platelet Function for Treating Coronary Heart Disease with Phlegm-stasis Intermingling Syndrome in Minipigs
Ziyan WANG ; Ying LI ; Aoao WANG ; Hongxu MENG ; Yue SHI ; Yanlei MA ; Guoyuan ZHANG ; Lei LI ; Jianxun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):41-53
ObjectiveThis paper aims to observe the role of Danlou tablet in treating coronary heart disease (CHD) with phlegm-stasis intermingling syndrome in minipigs by improving platelet function and explore the potential pharmacological mechanism of Danlou tablet in regulating platelet function by using proteomics technology. MethodsThirty Bama minipigs were randomly divided into a normal control group (6 pigs) and a high-fat diet group (24 pigs). After 2 weeks of high-fat diet feeding, the high-fat diet group was randomly subdivided into a model group, an atorvastatin group (1 mg·kg-1), and Danlou tablet groups (0.6 g·kg-1 and 0.3 g·kg-1). All groups continued to receive a high-fat diet for 8 weeks after the procedure. The normal control group was given a regular diet, underwent only coronary angiography, and did not receive an interventional injury procedure. The model group and each administration group were fed a high-fat diet. Two weeks later, they underwent a coronary angiography injury procedure. After the procedure, drugs were mixed into the feed every morning for 8 consecutive weeks, with the minipigs maintained on a continuous high-fat diet during this period. Quantitative proteomics technology was further used to study platelet proteins, and differential proteins were obtained by screening. Bioinformatics analysis was performed to analyze key regulatory proteins and biological pathways involved in the therapeutic effect of Danlou tablet on CHD with phlegm-stasis intermingling syndrome. ResultsCompared with the normal control group, the model group showed a significant increase in total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) of minipigs' serum (P<0.01), a significant shortening in prothrombin time of (PT) (P<0.01), a coagulation function index, and an increase in whole blood viscosity (P<0.01) and platelet aggregation rate (P<0.01). Moreover, the platelet morphology was altered, and the contents of endothelin-1 (ET-1) and nitric oxide (NO) were significantly increased (P<0.01). Hemodynamic parameters were obviously abnormal, including significantly decreased systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), and left ventricular maximal positive dp/dt (LV+dp/dtmax) (P<0.01). Left ventricular maximal negative dp/dt (LV-dp/dtmax) was significantly increased (P<0.01). Besides, there were myocardial cell hypertrophy, obvious edematous degeneration, massive interstitial inflammatory cell infiltration, high degree of fibrosis, and coronary endothelial atherosclerosis. TC and TG levels in minipigs' serum were significantly reduced in Danlou tablet groups with 0.6 g·kg-1 and 0.3 g·kg-1 (P<0.05, P<0.01), compared with those in the model group. LDL-C was decreased in the Danlou tablet group with 0.6 g·kg-1 (P<0.05). The whole blood viscosity under low and high shear conditions was significantly reduced in the Danlou tablet group with 0.6 g·kg-1 (P<0.05). In groups with all doses of Danlou tablet, maximum aggregation rate (MAR) and average aggregation rate (AAR) were significantly decreased (P<0.05, P<0.01), and platelets' morphological changes such as pseudopodia extension were reduced. ET-1 levels in the serum were significantly reduced. In the Danlou tablet group with 0.6 g·kg-1, NO level in the serum was reduced (P<0.05). In groups with all doses of Danlou tablet, DBP and MAP were significantly increased (P<0.05). In the Danlou tablet group with 0.6 g·kg-1, LVSP and LV+dp/dtmax were significantly increased (P<0.05, P<0.01), and LV-dp/dtmax was significantly decreased (P<0.05). In groups with all doses of Danlou tablet, edematous degeneration in myocardial tissue was milder, and coronary artery lesion degree was significantly alleviated. Compared with the normal control group, there were 94 differentially expressed proteins in the model group, including 81 up-regulated and 13 down-regulated proteins. Compared with the model group, the Danlou tablet group with 0.6 g·kg-1 showed 174 differentially expressed proteins, including 100 up-regulated and 74 down-regulated proteins. A total of 30 proteins were reversed after Danlou tablet intervention. Bioinformatics analysis revealed that its pharmacological mechanism may exert anti-platelet activation, aggregation, and adhesion effects through biological pathways such as regulation of actin cytoskeleton, platelet activation pathway, Fcγ receptor-mediated phagocytosis, as well as proteins such as growth factor receptor-bound protein 2 (GRB2), Ras-related C3 botulinum toxin substrate 2 (RAC2), RAC1, and heat shock protein 90 alpha family class A member 1 (HSP90AA1). ConclusionDanlou tablet can effectively reduce platelet activation and aggregation, exerting a good therapeutic effect on CHD with phlegm-stasis intermingling syndrome in minipigs. Its pharmacological mechanism may involve regulating biological pathways such as actin cytoskeleton and platelet activation pathway, as well as proteins like GRB2, RAC2, RAC1, and HSP90AA1, thereby exerting a pharmacological effect in anti-platelet activation, aggregation, and adhesion.
8.Comparison of Wild and Cultivated Bupleurum scorzonerifolium Based on Traditional Quality Evaluation
Changsheng YUAN ; Feng ZHOU ; Xingyu LIU ; Yu SHI ; Yihan WANG ; Huaizhu LI ; Yongliang LI ; Shan GUAN ; Huaizhong GAO ; Yanmeng LIU ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):203-214
ObjectiveTo characterize the quality differences among different germplasm and introduced varieties of Bupleurum scorzonerifolium roots(BSR), and explore the underlying molecular mechanisms, providing a basis for high-quality production and quality control. MethodsWild BSR from Yulin(YLW) served as the quality reference, we conducted comparative analysis among YLW, locally domesticated wild germplasm in Yulin(YLC3), Daqing germplasm introduced and cultivated in Yulin(YLDQC3), and locally cultivated germplasm in Daqing(DQC3). A combination of traditional pharmacognostic methods and modern multi-omics analyses was employed, including macroscopic traits(appearance, odor), microscopic features(proportions of cork, phloem, xylem), cell wall component contents(hemicellulose, cellulose, lignin), carbohydrate contents(starch, water-soluble polysaccharides), marker compound contents(ethanol-soluble extracts, total saponins, liposoluble extracts, and saikosaponins A, B2, C, D), metabolomics, and transcriptomics, in order to systematically characterize quality differences and investigate molecular mechanisms among these samples. ResultsMacroscopically, Yulin-produced BSR(YLW, YLC3, YLDQC3) exhibited significantly greater weight, length, and upper and middle diameters than Daqing-produced BSR(DQC3). Odor-wise, YLW and YLC3 had a a fragrance taste, YLDQC3 had a rancid oil odor, and DQC3 had a sweet and fragrant taste. Microscopically, Yulin germplasm(YLW, YLC3) and Daqing germplasm(YLDQC3, DQC3) shared similar structural features, respectively. However, Yulin germplasm showed significantly higher proportions of cork and phloem, as well as stronger xylem vessel staining intensity compared to Daqing germplasm. Regarding various component contents, Yulin germplasm contained significantly higher levels of ethanol-soluble extracts, total saponins, and saikosaponins A, B2, C, D, while Daqing germplasm had significantly higher levels of hemicellulose, starch, and liposoluble extracts. After introduction to Yulin, the Daqing germplasm(YLDQC3) showed increased starch, water-soluble polysaccharides and liposoluble extracts contents, decreased cell wall component content, but no significant difference in other component contents. Metabolomics revealed that saponins and terpenes accumulated significantly in Yulin germplasm, while alcohols and aldehydes accumulated predominantly in Daqing germplasm. Transcriptomics indicated similar gene expression patterns within the same germplasm but specificity between different germplasms. Integrative metabolomic-transcriptomic analysis identified 145 potential key genes associated with the saikosaponin biosynthesis pathway, including one acetyl-coenzyme A(CoA) acetyltransferase gene(ACAT), one 3-hydroxy-3-methylglutaryl-coenzyme A synthase gene(HMGS), two hydroxymethylglutaryl-CoA(HMG-CoA) reductase genes(HMG), one phosphomevalonate kinase gene(PMK), one 1-deoxy-D-xylose-5-phosphate synthase gene(CLA), one hydroxymethylbuten-1-aldol synthase gene(HDR), two farnesyl pyrophosphate synthase genes(FPPS), one squalene synthase gene(SQS), one β-amyrin synthase gene(BAS), 102 cytochrome P450(CYP450) gene family members, and 32 uridine diphosphate-glucuronosyltransferase(UGT) gene family members. ConclusionAmong the three cultivated types, YLC3 most closely resembles YLW in appearance, microscopic features, contents of major bioactive constituents, metabolomic and transcriptomic profiles. Yulin germplasm exhibits superior saponin synthesis capability compared to Daqing germplasm, and Yulin region is more suitable for the growth of B. scorzonerifolium. Based on these findings, it is recommended that artificial cultivation in northern Shaanxi and similar regions utilize the local Yulin germplasm source cultivated for at least three years.
9.Knowledge map and visualization analysis of pulmonary nodule/early-stage lung cancer prediction models
Yifeng REN ; Qiong MA ; Hua JIANG ; Xi FU ; Xueke LI ; Wei SHI ; Fengming YOU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):100-107
Objective To reveal the scientific output and trends in pulmonary nodules/early-stage lung cancer prediction models. Methods Publications on predictive models of pulmonary nodules/early lung cancer between January 1, 2002 and June 3, 2023 were retrieved and extracted from CNKI, Wanfang, VIP and Web of Science database. CiteSpace 6.1.R3 and VOSviewer 1.6.18 were used to analyze the hotspots and theme trends. Results A marked increase in the number of publications related to pulmonary nodules/early-stage lung cancer prediction models was observed. A total of 12581 authors from 2711 institutions in 64 countries/regions published 2139 documents in 566 academic journals in English. A total of 282 articles from 1256 authors were published in 176 journals in Chinese. The Chinese and English journals which published the most pulmonary nodules/early-stage lung cancer prediction model-related papers were Journal of Clinical Radiology and Frontiers in Oncology, respectively. Chest was the most frequently cited journal. China and the United States were the leading countries in the field of pulmonary nodules/early-stage lung cancer prediction models. The institutions represented by Fudan University had significant academic influence in the field. Analysis of keywords revealed that multi-omics, nomogram, machine learning and artificial intelligence were the current focus of research. Conclusion Over the last two decades, research on risk-prediction models for pulmonary nodules/early-stage lung cancer has attracted increasing attention. Prognosis, machine learning, artificial intelligence, nomogram, and multi-omics technologies are both current hotspots and future trends in this field. In the future, in-depth explorations using different omics should increase the sensitivity and accuracy of pulmonary nodules/early-stage lung cancer prediction models. More high-quality future studies should be conducted to validate the efficacy and safety of pulmonary nodules/early-stage lung cancer prediction models further and reduce the global burden of lung cancer.
10.Development of a new paradigm for precision diagnosis and treatment in traditional Chinese medicine
Jingnian NI ; Mingqing WEI ; Ting LI ; Jing SHI ; Wei XIAO ; Jing CHENG ; Bin CONG ; Boli ZHANG ; Jinzhou TIAN
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):43-47
The development of traditional Chinese medicine (TCM) diagnosis and treatment has undergone multiple paradigms, evolving from sporadic experiential practices to systematic approaches in syndrome differentiation and treatment and further integration of disease and syndrome frameworks. TCM is a vital component of the medical system, valued alongside Western medicine. Treatment based on syndrome differentiation embodies both personalized treatment and holistic approaches; however, the inconsistency and lack of stability in syndrome differentiation limit clinical efficacy. The existing integration of diseases and syndromes primarily relies on patchwork and embedded systems, where the full advantages of synergy between Chinese and Western medicine are not fully realized. Recently, driven by the development of diagnosis and treatment concepts and advances in analytical technology, Western medicine has been rapidly transforming from a traditional biological model to a precision medicine model. TCM faces a similar need to progress beyond traditional syndrome differentiation and disease-syndrome integration toward a more precise diagnosis and treatment paradigm. Unlike the micro-level precision trend of Western medicine, precision diagnosis and treatment in TCM is primarily reflected in data-driven applications that incorporate information at various levels, including precise syndrome differentiation, medication, disease management, and efficacy evaluation. The current priority is to accelerate the development of TCM precision diagnosis and treatment technology platforms and advance discipline construction in this area.


Result Analysis
Print
Save
E-mail