1.Severity Assessment Parameters and Diagnostic Technologies of Obstructive Sleep Apnea
Zhuo-Zhi FU ; Ya-Cen WU ; Mei-Xi LI ; Ping-Ping YIN ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(1):147-161
Obstructive sleep apnea (OSA) is an increasingly widespread sleep-breathing disordered disease, and is an independent risk factor for many high-risk chronic diseases such as hypertension, coronary heart disease, stroke, arrhythmias and diabetes, which is potentially fatal. The key to the prevention and treatment of OSA is early diagnosis and treatment, so the assessment and diagnostic technologies of OSA have become a research hotspot. This paper reviews the research progresses of severity assessment parameters and diagnostic technologies of OSA, and discusses their future development trends. In terms of severity assessment parameters of OSA, apnea hypopnea index (AHI), as the gold standard, together with the percentage of duration of apnea hypopnea (AH%), lowest oxygen saturation (LSpO2), heart rate variability (HRV), oxygen desaturation index (ODI) and the emerging biomarkers, constitute a multi-dimensional evaluation system. Specifically, the AHI, which measures the frequency of sleep respiratory events per hour, does not fully reflect the patients’ overall sleep quality or the extent of their daytime functional impairments. To address this limitation, the AH%, which measures the proportion of the entire sleep cycle affected by apneas and hypopneas, deepens our understanding of the impact on sleep quality. The LSpO2 plays a critical role in highlighting the potential severe hypoxic episodes during sleep, while the HRV offers a different perspective by analyzing the fluctuations in heart rate thereby revealing the activity of the autonomic nervous system. The ODI provides a direct and objective measure of patients’ nocturnal oxygenation stability by calculating the number of desaturation events per hour, and the biomarkers offers novel insights into the diagnosis and management of OSA, and fosters the development of more precise and tailored OSA therapeutic strategies. In terms of diagnostic techniques of OSA, the standardized questionnaire and Epworth sleepiness scale (ESS) is a simple and effective method for preliminary screening of OSA, and the polysomnography (PSG) which is based on recording multiple physiological signals stands for gold standard, but it has limitations of complex operations, high costs and inconvenience. As a convenient alternative, the home sleep apnea testing (HSAT) allows patients to monitor their sleep with simplified equipment in the comfort of their own homes, and the cardiopulmonary coupling (CPC) offers a minimal version that simply analyzes the electrocardiogram (ECG) signals. As an emerging diagnostic technology of OSA, machine learning (ML) and artificial intelligence (AI) adeptly pinpoint respiratory incidents and expose delicate physiological changes, thus casting new light on the diagnostic approach to OSA. In addition, imaging examination utilizes detailed visual representations of the airway’s structure and assists in recognizing structural abnormalities that may result in obstructed airways, while sound monitoring technology records and analyzes snoring and breathing sounds to detect the condition subtly, and thus further expands our medical diagnostic toolkit. As for the future development directions, it can be predicted that interdisciplinary integrated researches, the construction of personalized diagnosis and treatment models, and the popularization of high-tech in clinical applications will become the development trends in the field of OSA evaluation and diagnosis.
2.Text analysis of Traditional Chinese Medicine scientific and technological innovation policy in China based on policy tools
Yue-Ming LI ; Li-Jun ZHUO ; Jing-Jia ZHU ; Hong-Bing TAO
Chinese Journal of Health Policy 2024;17(1):36-42
Objective:To analyze the key points and shortcomings of Traditional Chinese Medicine(TCM)science and technology innovation policy in China,and to provide reference for the subsequent policy optimization.Methods:Searching for TCM science and technology innovation policy texts released at the national level since 2007,and use the two-dimensional analysis framework for quantitative analysis.Results:Among 27 policies,In the X dimension,supply-based,environmental and demand-based policy tools respectively accounted for 48.98%,39.29%and 11.73%.In the Y dimension,the proportion of scientific and technological innovation and achievement transformation was the highest(29.03%);Promoting the development of integrated Chinese and Western medicine was the least used(1.08%).Conclusion:There is a structural imbalance in the application of policy tools,the distribution difference of policy objectives is significant,and the internal policy tools'usage is imbalanced regarding policy objectives.Suggestions:Optimize the internal structure of policy tools.Meanwhile,enhance the structure of policy objectives,and facilitate the dynamic integration and application of policy tools to achieve the policy objectives of scientific and technological innovation in TCM.
3.Advances in crystal nucleation for amorphous drugs
Jie ZHANG ; Kang LI ; Zi-qing YANG ; Zi-han DING ; Sai-jun XIAO ; Zhi-ming YUE ; Li-mei CAI ; Jia-wen LI ; Ding KUANG ; Min-zhuo LIU ; Zhi-hong ZENG
Acta Pharmaceutica Sinica 2024;59(7):1962-1969
Amorphous solid dispersion (ASD) is one of the most effective formulation approaches to enhance the water solubility and oral bioavailability of poorly water-soluble drugs. However, maintenance of physical stability of amorphous drug is one of the main challenges in the development of ASD. Crystallization is a process of nucleation and crystal growth. The nucleation is the key factor that influences the physical stability of the ASD. However, a theoretical framework to describe the way to inhibit the nucleation of amorphous drug is not yet available. We reviewed the methods and theories of nucleation for amorphous drug. Meanwhile, we also summarized the research progress on the mechanism of additives influence on nucleation and environmental factors on nucleation. This review aims to enhance the better understanding mechanism of nucleation of amorphous drug and controlling over the crystal nucleation during the ASD formulation development.
4.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
5.Traditional Chinese Medicine Syndrome Element, Evolutionary Patterns of Patients with Hepatitis B Virus-Related Acute on Chronic Liver Failure at Different Stages: A Multi-Center Clinical Study
Simiao YU ; Kewei SUN ; Zhengang ZHANG ; Hanmin LI ; Xiuhui LI ; Hongzhi YANG ; Qin LI ; Lin WANG ; Xiaozhou ZHOU ; Dewen MAO ; Jianchun GUO ; Yunhui ZHUO ; Xianbo WANG ; Xin DENG ; Jiefei WANG ; Wukui CAO ; Shuqin ZHANG ; Mingxiang ZHANG ; Jun LI ; Man GONG ; Chao ZHOU
Journal of Traditional Chinese Medicine 2024;65(12):1262-1268
ObjectiveTo explore the syndrome elements and evolving patterns of patients with hepatitis B virus-related acute on chronic liver failure (HBV-ACLF) at different stages. MethodsClinical information of 1,058 hospitalized HBV-ACLF patients, including 618 in the early stage, 355 in the middle stage, and 85 in the late stage, were collected from 18 clinical centers across 12 regions nationwide from January 1, 2012 to February 28, 2015. The “Hepatitis B-related Chronic and Acute Liver Failure Chinese Medicine Clinical Questionnaire” were designed to investigate the basic information of the patients, like the four diagnostic information (including symptoms, tongue, pulse) of traditional Chinese medicine (TCM), and to count the frequency of the appearance of the four diagnostic information. Factor analysis and cluster analysis were employed to determine and statistically analyze the syndrome elements and patterns of HBV-ACLF patients at different stages. ResultsThere were 76 four diagnostic information from 1058 HBV-ACLF patients, and 53 four diagnostic information with a frequency of occurrence ≥ 5% were used as factor analysis entries, including 36 symptom information, 12 tongue information, and 5 pulse information. Four types of TCM patterns were identified in HBV-ACLF, which were liver-gallbladder damp-heat pattern, qi deficiency and blood stasis pattern, liver-kidney yin deficiency pattern, and spleen-kidney yang-deficiency pattern. In the early stage, heat (39.4%, 359/912) and dampness (27.5%, 251/912) were most common, and the pattern of the disease was dominated by liver-gallbladder damp-heat pattern (74.6%, 461/618); in the middle stage, dampness (30.2%, 187/619) and blood stasis (20.7%, 128/619) were most common, and the patterns of the disease were dominated by liver-gallbladder damp-heat pattern (53.2%, 189/355), and qi deficiency and blood stasis pattern (27.6%, 98/355); and in the late stage, the pattern of the disease was dominated by qi deficiency (26.3%, 40/152) and yin deficiency (20.4%, 31/152), and the patterns were dominated by qi deficiency and blood stasis pattern (36.5%, 31/85), and liver-gallbladder damp-heat pattern (25.9%, 22/85). ConclusionThere are significant differences in the distribution of syndrome elements and patterns at different stages of HBV-ACLF, presenting an overall trend of evolving patterns as "from excess to deficiency, transforming from excess to deficiency", which is damp-heat → blood stasis → qi-blood yin-yang deficiency.
6.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.
7.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.
8.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.
9.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.
10.Research progress of phage therapy in orthopedic implant-related infection
Zulipikaer MAIMAITI ; Zhuo LI ; Chi XU ; Jun FU ; Libo HAO ; Liang LIU ; Jiying CHEN ; Wei CHAI
Chinese Journal of Surgery 2024;62(1):81-85
The widespread application of implantable materials has brought about a corresponding increase in implant-related complications, with implant-associated infections being the most critical. Biofilms, which often form on these implants, can significantly impede the effectiveness of traditional antibiotic therapies. Therefore, strategies such as surgical removal of infected implants and prolonged antibiotic treatment have been acknowledged as effective measures to eradicate these infections. However,the challenges of antibiotic resistance and biofilm persistence often result in recurrent or hard-to-control infections, posing severe health threats to patients. Recent studies suggest that phages, a type of virus, can directly eliminate pathogenic bacteria and degrade biofilms. Furthermore, clinical trials have demonstrated promising therapeutic results with the combined use of phages and antibiotics. Consequently, this innovative therapy holds significant potential as an effective solution for managing implant-associated infections. This paper rigorously investigates and evaluates the potential value of phage therapy in addressing orthopedic implant-associated infections, based on a comprehensive review of relevant scientific literature.

Result Analysis
Print
Save
E-mail