1.Correlation between brain white matter lesions and insulin resistance in non-diabetic elderly individuals based on magnetic resonance imaging
Mei LI ; Fang YUAN ; Xizi XING ; Feng XIE ; Hua ZHANG
Chinese Journal of Radiological Health 2025;34(1):96-101
Objective To investigate the relationship between brain white matter lesions (WML) and triglyceride glucose (TyG) index in non-diabetic elderly individuals based on magnetic resonance imaging. Methods A total of 523 non-diabetic elderly individuals aged ≥ 60 years were selected from Jinan, Shandong Province, China from June 2018 to December 2019. According to the quartiles of TyG index, there were 133 participants in the first quartile (Q1) group, 127 in the second quartile (Q2) group, 132 in the third quartile (Q3) group, and 131 in the fourth quartile (Q4) group. All participants underwent brain magnetic resonance imaging to evaluate paraventricular, deep, and total WML volumes, as well as Fazekas scores. Results Compared with Q1, Q2, and Q3 groups, Q4 group showed significant increase in periventricular, deep, and total WML volumes (P < 0.05). The proportion of participants with a Fazekas score ≥ 2 in the periventricular, deep, and total WML was higher in the Q4 group compared with the Q1 and Q2 groups (P < 0.05). The proportion of participants with a Fazekas score ≥ 2 in deep WML was higher in Q4 group than in Q3 group (P < 0.05). TyG index was significantly positively correlated with periventricular, deep, and total WML volumes (r = 0.401, 0.405, and 0.445, P < 0.001). After adjusting for confounding factors, TyG index was still significantly positively correlated with periventricular, deep, and total WML volumes (P < 0.001). Logistic regression analysis showed that compared with Q1 group, the risk of Fazekas score ≥ 2 in periventricular WML was 1.950-fold (95% confidence interval [CI]: 1.154-3.294, P = 0.013) in Q3 group and 3.411-fold (95% CI: 1.984-5.863, P < 0.001) in Q4 group, the risk of Fazekas score ≥ 2 in total WML was 2.529-fold (95%CI: 1.444-4.430, P = 0.001) in Q3 group and 4.486-fold (95%CI: 2.314-8.696, P < 0.001) in Q4 group. The risk of Fazekas score ≥ 2 in deep WML was 2.953-fold (95%CI: 1.708-5.106, P < 0.001) in Q4 group compared with Q1 group. Conclusion Increased TyG index is an independent risk factor for WML in non-diabetic elderly individuals.
2.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
3.Risk Factor and Risk Prediction Modeling of Rectal Neuroendocrine Tumors
Liang XIE ; Chang LIU ; Jianhua LI ; Jianhui LI ; Xin HAO ; Haiyang HUA
Cancer Research on Prevention and Treatment 2025;52(7):598-604
Objective To analyze the risk factors associated with the occurrence of rectal neuroendocrine tumors (RNETs) and construct a risk prediction model. Methods Clinical data of patients who underwent electronic colonoscopy were collected. The clinical information on patients with and without RNETs were compared, and potential risk factors for RNETs were identified. Binary logistic regression was performed to analyze the relevant risk factors and construct a risk prediction model. Results Among 164 patients, 66 were diagnosed with RNETs, and 98 who did not have such a condition were randomly selected. Univariate logistic regression analysis revealed that age, fatty liver, anxiety and depression, total cholesterol, triglyceride levels, and carcinoembryonic antigen (CEA) were significant factors influencing the occurrence of RNETs (P<0.05). Multivariate logistic regression analysis identified age (P=0.015), anxiety and depression (P=0.031), cholesterol level (P=0.009), fatty liver (P=0.001), and CEA (P<0.001) as independent risk factors for RNETs. The participants were randomly divided into training and test sets at a 7:3 ratio. The training set was used to construct a nomogram-based risk prediction model, and the testing set was used for internal validation. The area under the curve values for the training and testing sets were 0.843 and 0.772, respectively (P>0.05). These findings indicate a good discriminative performance. The calibration curves for the training and testing sets were in good agreement with the 45° standard line, which suggests that the predicted probabilities were consistent with the actual outcomes. Decision curve analysis showed that the model provided a high net benefit within a threshold range of 0.2 to 0.7 for clinical decision making. Conclusion Young age, fatty liver, high CEA levels, high cholesterol levels, and anxiety and depression are independent risk factors for RNETs. The nomogram model constructed based on these risk factors exhibits a strong capability to predict the occurrence of RNETs, and clinical intervention can be considered based on the predicted probability values.
4.Exploring Quality Makers of Xiaoqinglong Granules in Treating Bronchial Asthma Based on Analytic Hierarchy Process-entropy Weight Method, Network Pharmacology and Molecular Docking
Huijuan XIE ; Zhuqian TANG ; Dan HU ; Yingbi XU ; Li HAN ; Bin YANG ; Hua LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):192-200
ObjectiveTo investigate the quality markers of Xiaoqinglong granules(XQLG) for treating bronchial asthma using the analytic hierarchy process(AHP)-entropy weight method(EWM), network pharmacology and high performance liquid chromatography(HPLC) content determination. MethodsEffectiveness, testability and peculiarity component data of XQLG in treating bronchial asthma were constructed through database retrieval, literature review, and network pharmacology. Subsequently, AHP-EWM was used to quantitatively identify and weight the control layer and element layer, the relevant compounds were selected as candidate quality markers based on comprehensive scores. Further comparison of reference substances and establishment of HPLC content determination method were used to determine the potential quality markers of XQLG, which were verified by molecular docking with disease targets. ResultsA total of 13 components, including glycyrrhizic acid, paeoniflorin, schisandrol A, isoliquiritigenin, 6-gingerol, ephedrine, liquiritin, albiflorin, liquiritigenin, 6-shogaol, pseudoephedrine, cinnamic acid and cinnamaldehyde, were identified as potential quality markers of XQLG by AHP-EWM. Quantitative analysis indicated that all aforementioned quality markers could be detected in 13 batches of XQLG, indicating that it had stable testability as a quality marker. Among these 13 batches of samples, ephedrine and paeoniflorin exhibited good consistency in content, while pseudoephedrine and cinnamaldehyde showed poor consistency. Molecular docking analysis revealed that the 13 compounds exhibited binding energies with the core targets -2.11 kcal·mol-1, indicating that the 13 compounds could spontaneously bind to the disease targets, which may be the material basis for the treatment of bronchial asthma with XQLG. ConclusionIn this study, 13 compounds were screened by AHP-EWM combined with network pharmacology and HPLC as quality markers for the treatment of bronchial asthma by XQLG, laying the foundation for enhancing the quality standards of this preparation.
5.Bioequivalence study of sidenafil citrate tablets in Chinese healthy subjects
Xiao-Bin LI ; Lu CHEN ; Xiu-Jun WU ; Yu-Xin GE ; Wen-Chao LU ; Ting XIAO ; He XIE ; Hua-Wei WANG ; Wen-Ping WANG
The Chinese Journal of Clinical Pharmacology 2024;40(3):430-434
Objective To evaluate the bioequivalence of oral sidenafil citrate tablets manufactured(100 mg)test preparations and reference preparations in healthy subjects under fasting and fed conditions.Methods Using a single-dose,randomized,open-lable,two-period,two-way crossover design,36 healthy subjects respectively for fasting and fed study were enrolled,and randomized into two groups to receive a single dose of test 100 mg with 7-day washout period.Plasma concentration of sidenafil and N-demethylsildenafil was determined by liquid chromatography-tandem mass spectrometry(LC-MS/MS)method.The pharmacokinetic parameters were calculated by Analyst 1.6.3(AB Scie)using non-compartmental model,and bioequivalence evaluation was performed for the two preparations.Relevant safety evaluations were performed during the trial.Results The main pharmacokinetic parameters of sidenafil after a single oral dose of sidenafil citrate tablets under fasting condition for test and reference were as follows:Cmax were(494.69±230.94)and(558.78±289.83)ng·mL-1,AUC0-t were(1 336.21±509.78)and(1 410.82±625.99)h·ng·mL-1,AUC0-were(1 366.49±512.16)and(1 441.84±628.04)h·ng·mL-1,respectively.The main pharmacokinetic parameters of sidenafil under fed condition for T and R were as follows:Cmax were(381.89±126.53)and(432.47±175.91)ng·mL-1,AUC0-t were(1 366.34±366.99)and(1 412.76±420.37)h·ng·mL-1,AUC0-were(1 403.28±375.32)and(1 454.13±429.87)h·ng·mL-1,respectively.The results demonstrated the bioequivalence of sidenafil citrate tablets between T and R.The incidence of adverse events in fasting and fed tests were 33.33%and 25.00%,respectively.No serious adverse event was reported.Conclusion The test and reference formulation of sidenafil citrate tablets were equivalent and was safe.
6.GLUT1-targeted Nano-delivery System for Active Ingredients of Traditional Chinese Medicine:A Review
Hua ZHU ; Huimin LUO ; Si LIN ; Bingbing WANG ; Jinwei LI ; Liba XU ; Miao ZHANG ; Fengfeng XIE ; Long CHEN ; Meilin LI ; Lu LU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(12):270-280
Tumor cells use glycolysis to provide material and energy under hypoxic conditions to meet the energy requirements for rapid growth and proliferation, namely the Warburg effect. Even under aerobic conditions, tumor cells mainly rely on glycolysis to provide energy. Therefore, glucose transporter protein 1(GLUT1), which is involved in the process of glucose metabolism, plays an important role in tumorigenesis, development and drug resistance, and is considered to be one of the important targets in the treatment of malignant tumors. In recent years, research on tumor glucose metabolism has gradually become a hot spot. It has been shown that various factors are involved in the regulation of tumor energy metabolism, among which the role of GLUT1 is the most critical. In this paper, the authors reviewed the latest research progress of GLUT1-targeted traditional Chinese medicine(TCM) active ingredient nano-delivery system in tumor therapy, aiming to reveal the feasibility and effectiveness of this system in the delivery of chemotherapeutic drugs. The GLUT1-targeted TCM active ingredient nano-delivery system can overcome the bottleneck of the traditional targeting strategy as well as the high-permeability long retention(EPR) effect. In summary, the authors believe that the GLUT1-targeted TCM active ingredient nano-delivery system provides a new strategy for targeted treatment of tumors and has a broad application prospect in tumor prevention and treatment.
7.Longitudinal extrauterine growth restriction in extremely preterm infants: current status and prediction model
Xiaofang HUANG ; Qi FENG ; Shuaijun LI ; Xiuying TIAN ; Yong JI ; Ying ZHOU ; Bo TIAN ; Yuemei LI ; Wei GUO ; Shufen ZHAI ; Haiying HE ; Xia LIU ; Rongxiu ZHENG ; Shasha FAN ; Li MA ; Hongyun WANG ; Xiaoying WANG ; Shanyamei HUANG ; Jinyu LI ; Hua XIE ; Xiaoxiang LI ; Pingping ZHANG ; Hua MEI ; Yanju HU ; Ming YANG ; Lu CHEN ; Yajing LI ; Xiaohong GU ; Shengshun QUE ; Xiaoxian YAN ; Haijuan WANG ; Lixia SUN ; Liang ZHANG ; Jiuye GUO
Chinese Journal of Neonatology 2024;39(3):136-144
Objective:To study the current status of longitudinal extrauterine growth restriction (EUGR) in extremely preterm infants (EPIs) and to develop a prediction model based on clinical data from multiple NICUs.Methods:From January 2017 to December 2018, EPIs admitted to 32 NICUs in North China were retrospectively studied. Their general conditions, nutritional support, complications during hospitalization and weight changes were reviewed. Weight loss between birth and discharge > 1SD was defined as longitudinal EUGR. The EPIs were assigned into longitudinal EUGR group and non-EUGR group and their nutritional support and weight changes were compared. The EPIs were randomly assigned into the training dataset and the validation dataset with a ratio of 7∶3. Univariate Cox regression analysis and multiple regression analysis were used in the training dataset to select the independent predictive factors. The best-fitting Nomogram model predicting longitudinal EUGR was established based on Akaike Information Criterion. The model was evaluated for discrimination efficacy, calibration and clinical decision curve analysis.Results:A total of 436 EPIs were included in this study, with a mean gestational age of (26.9±0.9) weeks and a birth weight of (989±171) g. The incidence of longitudinal EUGR was 82.3%(359/436). Seven variables (birth weight Z-score, weight loss, weight growth velocity, the proportion of breast milk ≥75% within 3 d before discharge, invasive mechanical ventilation ≥7 d, maternal antenatal corticosteroids use and bronchopulmonary dysplasia) were selected to establish the prediction model. The area under the receiver operating characteristic curve of the training dataset and the validation dataset were 0.870 (95% CI 0.820-0.920) and 0.879 (95% CI 0.815-0.942), suggesting good discrimination efficacy. The calibration curve indicated a good fit of the model ( P>0.05). The decision curve analysis showed positive net benefits at all thresholds. Conclusions:Currently, EPIs have a high incidence of longitudinal EUGR. The prediction model is helpful for early identification and intervention for EPIs with higher risks of longitudinal EUGR. It is necessary to expand the sample size and conduct prospective studies to optimize and validate the prediction model in the future.
8. Effect of alisol A on cerebral ischemia reperfusion injury by protecting blood brain barrier and its mechanism
Yun-Fei DENG ; Hui-Hong LI ; Yang-Jie ZHOU ; Wei WEI ; Xie-Hua XUE ; Xie-Hua XUE ; Xie-Hua XUE
Chinese Pharmacological Bulletin 2024;40(1):83-90
Aim To investigate whether alisol A (AA) could improve the blood brain barrier (BBB) mediated cortex cerebral ischemia-repeifusion injury (CIRI) by inhibiting matrix metalloproteinase 9 (MMP-9). Methods The global cerebral ischemia- reperfusion (GCI/R) model in mice was established, and the AA was intragastric injected subsequently for seven days. The modified neurological severity scores (mNSS), open field test and Y-maze test were applied to detect neurological function. Magnetic resonance spectroscopy (MRS) was used to detect relevant neu- rosubstance metabolism in cortex of mice. Transmission electron microscope (TEM) was employed to observe the ultrastructure of BBB in cortex. Western blot and immunohistochemistry were used to detect the MMP-9 level in cortex. The binding possibility of A A and MMP-9 was determined by molecular docking. Results Compared with Sham group, mice in GCI/R group have an increased mNSS score but decreased at total distance and center distance to total distance ratio in open field test as well as alternation rate in Y-maze test (P<0.01). While mice in GCI/R + AA group have a decreased mNSS score but increased at total distance and center distance to total distance ratio in open field test as well as alternation rate in Y-maze test (P<0.01) compared with GCI/R group. MRS results found that in cortex of GCI/R group mice, the level of GABA and NAA significantly decreased while the Cho, mI and Tau level increased (P<0.01). Whereas in GCI/R + AA group mice, the GABA and NAA level increased and the Cho, ml and Tau decreased significantly (P<0.01). By TEM we observed that the basilemma of cerebral microvessels collapsed, the lumen narrowed, the endothelial cells were active and plasma membranes ruffled, gaps between cells were enlarged and tight junctions were damaged and the end feet of astrocytes were swollen in GCI/R group mice. While in GCI/R + AA group mice, the lumen was filled, plasma membranes of endothelial cells were smooth, tight junctions were complete and end feet of astrocytes were in normal condition. Western blot and immunohistochemistry both found that the MMP-9 level increased in GCI/R group mice (P < 0.01) and decreased in GCI/R + AA group mice (P < 0.05). Molecular docking proved the binding between aliso A and MMP9 through TYR-50 and ARG-106, and the binding energy was calculated as -6.24 kcal · mol
9.Effect and mechanism of proteasome inhibitor MG132 on memory impairment caused by chronic hypoxia in mice
Hua-Ping DONG ; Peng LI ; Xiao-Xu LI ; Si-Min ZHOU ; Heng XIAO ; Jia-Xin XIE ; Pei HUANG ; Yu WU ; Zhi-Feng ZHONG
Medical Journal of Chinese People's Liberation Army 2024;49(4):449-458
Objective To investigate the effect and mechanism of proteasome inhibitor MG132 on memory impairment induced by chronic hypoxia in mice.Methods(1)A hypoxic model of the mouse midbrain dopaminergic neuron cell line MN9D was established using a hypoxia workstation.To observe the effects of hypoxia on the expression of TH,Ub-K48 and Ub-K63,MN9D cells were divided into normoxia group and hypoxia(12 h,24 h and 48 h)groups.To observe the effects of MG132 on the expression of the above-mentioned proteins,MN9D cells were divided into normoxia group,hypoxia group and hypoxia + MG132(25,50,100,200 μmol/L)group.(2)A mouse model of memory impairment was established using a hypobaric chamber.To observe the effects of hypobaric hypoxia on the expression of TH,Ub-K48 and Ub-K63 in the substantia nigra compacta(SNc)of mice,thirty C57BL/6 mice were randomly and equally divided into normoxia group and hypobaric hypoxia(3 d and 21 d)groups,10 in each group.To observe the effects of MG132 on spatial memory impairment induced by hypobaric hypoxia,twenty-four C57BL/6 mice were randomly and equally divided into normoxia group,hypobaric hypoxia 21 d group and hypobaric hypoxia 21 d+MG132 group,8 in each group.(3)The protein expression levels of TH,Ub-K48,and Ub-K63 in MN9D cells which were either subjected to different durations of hypoxia treatment or pre-treated with MG132 prior to hypoxia treatment were detected using Western blotting(WB).The novel object recognition test was used to detect the memory function of mice.Immunofluorescence was used to detect the proportion of positive immunoreactive area of TH response in the SNc region.The expression levels of TH,Ub-K48,and Ub-K63 in the SNc region were detected by WB.Results(1)Compared with normoxia group,MN9D cells in hypoxia 24 h group showed increasing expression of Ub-K48 and Ub-K63(P<0.05),and decreasing expression of TH(P<0.05),and MN9D cells in all hypoxia groups showed increasing expression of Ub-K48/TH and Ub-K63/TH(P<0.05).Compared with hypoxia group,MN9D cells showed decreasing expression of Ub-K48/TH and Ub-K63/TH in hypoxia + MG132 100 umol/L group and hypoxia + MG132 200 umol/L group(P<0.05).(2)Compared with the mice in normoxia group,mice in 3 d and 21 d hypobaric hypoxia groups showed decreasing expression of TH(P<0.001),and increasing expression of Ub-K48/TH and Ub-K63/TH(P<0.05)in the SNc region.Compared with normoxia group,the mice in 21 d hypobaric hypoxia group showed a lower new object recognition index(P<0.01),and the proportion of positive immunoreactive area of TH response in the SNc region(P<0.05).Compared with 21 d hypobaric hypoxia group,the mice in hypobaric hypoxia 21 d+MG132 group showed a higher new object recognition index(P<0.01).Conclusion The proteasome inhibitor MG132 could alleviate the memory impairment induced by chronic hypoxia in mice,and its mechanism may be related to the inhibition of Ub-K63 and Ub-K48,which in turn upregulates expression of TH in dopaminergic neurons.
10.Carrier screening for 223 monogenic diseases in Chinese population:a multi-center study in 33 104 individuals
Wei HOU ; Xiaolin FU ; Xiaoxiao XIE ; Chunyan ZHANG ; Jiaxin BIAN ; Xiao MAO ; Juan WEN ; Chunyu LUO ; Hua JIN ; Qian ZHU ; Qingwei QI ; Yeqing QIAN ; Jing YUAN ; Yanyan ZHAO ; Ailan YIN ; Shutie LI ; Yulin JIANG ; Manli ZHANG ; Rui XIAO ; Yanping LU
Journal of Southern Medical University 2024;44(6):1015-1023
Objective To investigate the epidemiological characteristics and mutation spectrum of monogenic diseases in Chinese population through a large-scale,multicenter carrier screening.Methods This study was conducted among a total of 33 104 participants(16 610 females)from 12 clinical centers across China.Carrier status for 223 genes was analyzed using high-throughput sequencing and different PCR methods.Results The overall combined carrier frequency was 55.58%for 197 autosomal genes and 1.84%for 26 X-linked genes in these participants.Among the 16 669 families,874 at-risk couples(5.24%)were identified.Specifically,584 couples(3.50%)were at risk for autosomal genes,306(1.84%)for X-linked genes,and 16 for both autosomal and X-linked genes.The most frequently detected autosomal at-risk genes included GJB2(autosomal recessive deafness type 1A,393 couples),HBA1/HBA2(α-thalassemia,36 couples),PAH(phenylketonuria,14 couples),and SMN1(spinal muscular atrophy,14 couples).The most frequently detected X-linked at-risk genes were G6PD(G6PD deficiency,236 couples),DMD(Duchenne muscular dystrophy,23 couples),and FMR1(fragile X syndrome,17 couples).After excluding GJB2 c.109G>A,the detection rate of at-risk couples was 3.91%(651/16 669),which was lowered to 1.72%(287/16 669)after further excluding G6PD.The theoretical incidence rate of severe monogenic birth defects was approximately 4.35‰(72.5/16 669).Screening for a battery of the top 22 most frequent genes in the at-risk couples could detect over 95%of at-risk couples,while screening for the top 54 genes further increased the detection rate to over 99%.Conclusion This study reveals the carrier frequencies of 223 monogenic genetic disorders in the Chinese population and provides evidence for carrier screening strategy development and panel design tailored to the Chinese population.In carrier testing,genetic counseling for specific genes or gene variants can be challenging,and the couples need to be informed of these difficulties before testing and provided with options for not screening these genes or gene variants.

Result Analysis
Print
Save
E-mail