1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Finite element analysis of three internal fixation modalities for treatment of Pauwels type Ⅲ femoral neck fractures under different loading conditions
Zhenggang LI ; Xuehong SHANG ; Zhang WU ; Hong LI ; Chaojun SUN ; Huadong CHEN ; Zhe SUN ; Yi YANG
Chinese Journal of Tissue Engineering Research 2025;29(3):455-463
BACKGROUND:There is still no consensus on the optimal internal fixation for the treatment of Pauwels Ⅲ femoral neck fracture,and most of the related finite element analyses have been performed using a single simplified loading condition,and the biomechanical properties of commonly used internal fixation devices need to be further investigated. OBJECTIVE:To analyze the biomechanical characteristics of Pauwels Ⅲ femoral neck fractures treated with cannulated compression screw,dynamic hip screw,and femoral neck system by finite element method under different loading conditions of single-leg standing loads and sideways fall loads. METHODS:The DICOM data of healthy adult femur were obtained by CT scanning,imported into Mimics 15.0 software to obtain the rough model of bone tissue.The data exported from Mimics were optimized by Geomagics software,and then three internal fixation models were built and assembled with the femur model according to the parameters of the clinical application of the cannulated compression screw,dynamic hip screw,and femoral neck system by using Pro/E software.Finally,the three internal fixation models were imported into Ansys software for loading and calculation to analyze the stress distribution and displacement of the femur and the internal fixation under different working conditions of single-leg standing loads and sideways fall loads,as well as the stress characteristics of the calcar femorale and Ward's triangle. RESULTS AND CONCLUSION:(1)Under the single-leg standing load and the sideways fall load,the proximal femoral stress of the three internal fixation models was mainly distributed above the fracture end of the femoral neck.The peak stress of the proximal femoral end,fracture end,Ward triangle,and calcar femorale of the three internal fixation models were the smallest in the femoral neck system model and the largest in the cannulated compression screw model.(2)Under the single-leg standing load and the sideways fall load,the peak displacement of the proximal femur of the three internal fixation models was all located at the top of the femoral head,and the peak displacement was the smallest in the femoral neck system model and the largest in the cannulated compression screw model.(3)The peak displacement of the three internal fixation models was all located at the top of the internal fixation device under the single-leg standing and sideways fall loading conditions,and the peak displacement values were the smallest in the femoral neck system internal fixation model and the largest in the cannulated compression screw internal fixation model.(4)The internal fixation stress of the three internal fixation models was mainly distributed in the area near the fracture end of the internal fixation device under the single-leg standing and sideways fall loads,and the peak value of internal fixation stress was the smallest in the femoral neck system model and the largest in the cannulated compression screw model.(5)These results suggest that the mechanical stability of the femoral neck system is the best,but there may be a risk of stress shielding of the fracture end and calcar femorale.The stress of the internal fixation device of the femoral neck system is more dispersed,and the risk of internal fixation break is lower.
3.Regenerative endodontic procedures for a prematurely erupted maxillary premolar with immature roots and chronic apical periodontitis: a case report and literature review
WANG Xiao ; XIA Shang ; LIU Yan ; YANG Yu' ; e ; LI Hong
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(8):666-671
Objective:
To investigate treatment strategies for chronic periapical periodontitis in prematurely erupted premolars and provide guidance for managing pulp and periapical diseases in young permanent teeth with immature roots.
Methods:
A regenerative endodontic procedure (REP) was performed on a prematurely erupted maxillary left first premolar (tooth 24) at Nolla stage Ⅶ with chronic apical periodontitis, following standardized protocols including root canal irrigation, disinfection, and coronal sealing. The case was followed up, and a literature review was conducted.
Results:
Clinical resolution of symptoms was observed on tooth 24, with sustained root development. After a 20-month follow-up, the tooth had restored biological function. Literature synthesis revealed that periapical infections in prematurely erupted permanent teeth predominently arise from pulp exposure and bacterial infection, with retrograde infection being rare. For young permanent teeth with necrotic pulp, regenerative endodontic procedures has been established as the treatment of choice to promote apical closure and root maturation. The critical steps of regenerative endodontic procedures include thorough disinfection, induced bleeding to form a fibrin scaffold, and coronal sealing to facilitate stem cell recruitment and differentiation.
Conclusion
Regenerative endodontic procedures represents an effective and viable treatment option for prematurely erupted young permanent teeth with chronic periapical periodontitis.
4.Research advances in the use of pigeon animal robots
Mengmeng LI ; Long YANG ; Lifang YANG ; Yuhuai LIU ; Hong WAN ; Zhigang SHANG
Acta Laboratorium Animalis Scientia Sinica 2024;32(2):248-253
Pigeons show flocking and homing behaviors,which require characteristics including long-distance weight-bearing and continuous flight,with excellent navigation and spatial cognitive abilities.Pigeons have been widely used in animal robot research in recent years.Pigeon robots achieve motor behavior control by applying neural information intervention to specific neural targets in the pigeon's brain.This review summarizes research progress in pigeon robots based on the sensory system,motivation and emotional system or cortex and midbrain motor area respectively,according to the distribution of hierarchical multi-level neural regulatory targets in the pigeon's brain,with the aim of providing reference and guidance for further applied research into the use of pigeon robots in space perception,reconnaissance,and anti-terrorism search and rescue.
5.Predictive performance of the variation rate of the driving pressure on the outcome of invasive mechanical ventilation in patients with acute respiratory distress syndrome
Hui-Dan JING ; Jun-Ying TIAN ; Wei LI ; Bing-Ling HE ; Hong-Chao LI ; Fu-Xia JIAN ; Cui SHANG ; Feng SHEN
Chinese Journal of Traumatology 2024;27(2):107-113
Purpose::To assess the value of the driving pressure variation rate (ΔP%) in predicting the outcome of weaning from invasive mechanical ventilation in patients with acute respiratory distress syndrome.Methods::In this case-control study, a total of 35 patients with moderate-severe acute respiratory distress syndrome were admitted to the intensive care unit between January 2022 and December 2022 and received invasive mechanical ventilation for at least 48 h were enrolled. Patients were divided into successful weaning group and failed weaning group depending on whether they could be removed from ventilator support within 14 days. Outcome measures including driving pressure, PaO 2:FiO 2, and positive end-expiratory pressure, etc. were assessed every 24 h from day 0 to day 14 until successful weaning was achieved. The measurement data of non-normal distribution were presented as median (Q 1, Q 3), and the differences between groups were compared by Wilcoxon rank sum test. And categorical data use the Chi-square test or Fisher's exact test to compare. The predictive value of ΔP% in predicting the outcome of weaning from the ventilator was analyzed using receiver operating characteristic curves. Results::Of the total 35 patients included in the study, 17 were successful vs. 18 failed in weaning from a ventilator after 14 days of mechanical ventilation. The cut-off values of the median ΔP% measured by Operator 1 vs. Operator 2 in the first 4 days were ≥ 4.17% and 4.55%, respectively ( p < 0.001), with the area under curve of 0.804 (sensitivity of 88.2%, specificity of 64.7%) and 0.770 (sensitivity of 88.2%, specificity of 64.7%), respectively. There was a significant difference in mechanical ventilation duration between the successful weaning group and the failure weaning group (8 (6, 13) vs. 12 (7.5, 17.3), p = 0.043). The incidence of ventilator-associated pneumonia in the successful weaning group was significantly lower than in the failed weaning group (0.2‰ vs. 2.3‰, p = 0.001). There was a significant difference noted between these 2 groups in the 28-day mortality (11.8% vs. 66.7%, p = 0.003). Conclusion::The median ΔP% in the first 4 days of mechanical ventilation showed good predictive performance in predicting the outcome of weaning from mechanical ventilation within 14 days. Further study is needed to confirm this finding.
6.Expert consensus on the rational application of the biological clock in stomatology research
Kai YANG ; Moyi SUN ; Longjiang LI ; Zhangui TANG ; Guoxin REN ; Wei GUO ; Songsong ZHU ; Jia-Wei ZHENG ; Jie ZHANG ; Zhijun SUN ; Jie REN ; Jiawen ZHENG ; Xiaoqiang LV ; Hong TANG ; Dan CHEN ; Qing XI ; Xin HUANG ; Heming WU ; Hong MA ; Wei SHANG ; Jian MENG ; Jichen LI ; Chunjie LI ; Yi LI ; Ningbo ZHAO ; Xuemei TAN ; Yixin YANG ; Yadong WU ; Shilin YIN ; Zhiwei ZHANG
Journal of Practical Stomatology 2024;40(4):455-460
The biological clock(also known as the circadian rhythm)is the fundamental reliance for all organisms on Earth to adapt and survive in the Earth's rotation environment.Circadian rhythm is the most basic regulatory mechanism of life activities,and plays a key role in maintaining normal physiological and biochemical homeostasis,disease occurrence and treatment.Recent studies have shown that the biologi-cal clock plays an important role in the development of oral tissues and in the occurrence and treatment of oral diseases.Since there is cur-rently no guiding literature on the research methods of biological clock in stomatology,researchers mainly conduct research based on pub-lished references,which has led to controversy about the research methods of biological clock in stomatology,and there are many confusions about how to rationally apply the research methods of circadia rhythms.In view of this,this expert consensus summarizes the characteristics of the biological clock and analyzes the shortcomings of the current biological clock research in stomatology,and organizes relevant experts to summarize and recommend 10 principles as a reference for the rational implementation of the biological clock in stomatology research.
7.Mechanism of effect of rosiglitazone on pancreatic cancer in diabetic mice based on impact of PPARy on glucose transport and metabolism
Rui-Ping HU ; Li-Feng SHANG ; He-Jing WANG ; Hong-Xia CHE ; Ming-Liang WANG ; Huan YANG ; Yuan-Yuan JIN ; Fei-Fei ZHANG ; Jian-Ling ZHANG
Chinese Pharmacological Bulletin 2024;40(7):1325-1334
Aim To explore the mechanism of the effect of rosiglitazone(Rsg)on the pancreatic cancer in diabetic mice based on the impact of PPARγ on glu-cose transport and metabolism.Methods A high-fat and high sugar diet combined with STZ was used to construct T2DM model;T2DM mice and normal mice were subcutaneously injected with PANC02 cells to construct a transplanted tumor model.T2DM trans-planted tumor mice and normal transplanted tumor mice were divided into the following groups:Rsg,PPARy inhibitor(PIN-2),rosiglitazone+PPARγ in-hibitor(Rsg+PIN-2),and normal transplanted tumor mice(NDM)and T2DM transplanted tumor mice(DM)were used as control groups,respectively.Tis-sue samples were collected after intervention.Tissue pathological changes were observed by HE staining.The expressions of Ki67 and PCNA proteins were de-tected by immunohistochemistry.Cell apoptosis was detected by TUNEL assay.The expression of PPARγwas detected by immunofluorescence.The expressions of Glucokinase,GLUT2,Nkx6.1,PDX-1RT-PCR were determined by Western blot.Results Rsg could significantly reduce the tumor mass,pathological chan-ges,Ki67 and PCNA expression of transplanted tumors(P<0.05),increase cell apoptosis and the expression of PPARγ,Glucokinase,GLUT2,Nkx6.1,PDX-1 proteins in NDM and DM mice(P<0.05).PIN-2 could reverse the indicator changes caused by Rsg in NDM and DM mice.However,compared with NDM mice,the above related indicators of the DM group mice were more sensitive to Rsg and PIN-2.Conclu-sions Compared to non-diabetic pancreatic cancer,rosiglitazone can more sensitively inhibit the prolifera-tion of pancreatic cancer with T2DM,induce apopto-sis,and reprogram the metabolism of pancreatic cancer with T2DM by activating PPA Rγ and altering the ex-pression of glucose and lipid metabolism genes,there-by exerting an anti-cancer effect.
8.Exploring the common mechanism of Yindan Xinnaotong soft capsule in the treatment of stroke and coronary heart disease through HIF1α -MMP9-mediated HIF1α signaling pathway
Jie GAO ; Yi-feng DONG ; Si-meng WANG ; Ru-shang HE ; Ting-can JIANG ; Ming-jiang WU ; Hong-hua WU ; Xing LI ; Guan-wei FAN ; Yan ZHU ; Ming LV
Acta Pharmaceutica Sinica 2023;58(6):1401-1411
Coronary heart disease (CHD) and stroke are the most well-known cardiovascular diseases, which share many common pathological basis. Yindan Xinnaotong soft capsule (YDXNT) is a commonly used Chinese patent medicine in the treatment of stroke and CHD. However, its action of mechanism of co-treatment for stroke and CHD is still unclear. The aim of this study was to explore the common mechanism of YDXNT in co-treatment of CHD and stroke using network pharmacology, experimental verification and molecular docking. An integrated literature mining and databases of IPA, ETCM, HERB, Swiss Target Prediction, OMIM and GeneCards were used to screen and predict active ingredients and potential targets of YDXNT in co-treatment of CHD and stroke. The protein-protein interaction network, GO analysis and pathway analysis were analyzed by IPA software. The effect of YDXNT on core targets was verified by immunofluorescence. UPLC-QTOF/MS and molecular docking were used to screen and predict the main active constituents of YDXNT and their interactions with core targets. A total of 151 potential targets are predicted for YDXNT in co-treatment of CHD and stroke. Hypoxia-inducible factor-1
9.Identification of the metabolites from co-cultures of marine Streptomyces sp. IMB18-531 and Cladosporium sp. IMB19-099
Sha-sha LI ; Qin LI ; Yi-ming LI ; Yue SHANG ; Hong-wei HE ; Shu-zhen CHEN ; Ji-cheng SHU ; Mao-luo GAN
Acta Pharmaceutica Sinica 2023;58(4):967-974
A new siderophore chelate (
10.Influencing factors of negative conversion time of nucleic acid detection in 228 patients infected with Omicron variant of SARS-CoV-2 in Shanghai
YUAN Jia-ying ; WANG Xiang-yun ; LI Xiang ; LI Li ; FANG Yao ; AI Hong-jun ; LI Pan-pan ; SHANG Yan ; CHEN Yuan-jing
China Tropical Medicine 2023;23(4):388-
Abstract: Objective To analyze and compare the effects of different clinical characteristics on the negative conversion time of nucleic acid detection after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant infection, and to provide a scientific basis for the isolation and treatment of coronavirus disease 2019 (COVID-19). Methods The epidemiological and clinical data of 228 mild SARS-CoV-2 Omicron variant infected patients diagnosed in Shanghai were retrospectively collected from April 27, 2022 to June 8, 2022 in Wujiaochang designated Hospital, Yangpu District, Shanghai. The negative conversion time of nucleic acid detection was used as the outcome variable, and the patients were divided into A (≤18 days) and B (>18 days). Univariate and multivariate logistic regression analysis were used to analyze the influencing factors of the negative conversion time of nucleic acid detection. Results The mean nucleic acid conversion time of 228 patients was (18.7±12.1) d, with the median time of 18 (2-46) d. Among them, 120 patients in group A had an average nucleic acid conversion time of (13.2±2.0) d, and 108 cases in group B had an average nucleic acid conversion time of (20.8±1.3) d. Univariate analysis showed that there were no statistically significant differences in the effects of hypertension, coronary heart disease, diabetes, hypokalemia, malignant tumors, neuropsychiatric diseases, chronic digestive diseases on the negative nucleic acid conversion time (P>0.05); however, there were significant differences in the effects of combined cerebrovascular disease, leukopenia, chronic respiratory system diseases and vaccination on the negative nucleic acid conversion time (P<0.05). Further multivariate logistic regression analysis revealed that the combination of chronic respiratory diseases and non-vaccination were significant risk factors for prolongation of negative nucleic acid conversion time (P<0.05). Conclusions The results of this study show that gender, age and whether hypertension, coronary heart disease, diabetes mellitus, hypokalemia, malignant tumor, neuropsychiatric disease and chronic digestive disease have no significant effect on the nucleic acid conversion time, whereas chronic respiratory disease and no vaccination are significantly correlated with the prolongation of nucleic acid conversion time in SARS-CoV-2 Omicron-infected patients.


Result Analysis
Print
Save
E-mail