1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Establishment and stress analysis of a finite element model for adolescent cervical disc herniation
Yuxin ZHAO ; Liang LIANG ; Feng JIN ; Yangyang XU ; Zhijie KANG ; Yuan FANG ; Yujie HE ; Xing WANG ; Haiyan WANG ; Xiaohe LI
Chinese Journal of Tissue Engineering Research 2025;29(3):448-454
BACKGROUND:Cervical disc herniation can cause pain in the neck and shoulder area,as well as radiating pain in the upper limbs.The incidence rate is increasing year by year and tends to affect younger individuals.Fully understanding the biomechanical characteristics of the cervical spine in adolescents is of great significance for preventing and delaying the onset of cervical disc herniation in this age group. OBJECTIVE:To reconstruct cervical spine models for both healthy adolescents and adolescent patients with cervical disc herniation utilizing finite element analysis techniques,to analyze the motion range of the C1-T1 cervical vertebrae as well as the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and the cartilage of the small joints. METHODS:A normal adolescent's cervical spine and an adolescent patient with cervical disc herniation were selected in this study.The continuous scan cervical spine CT raw image data were imported into Mimics 21.0 in DICOM format.The C1-T1 vertebrae were reconstructed separately.Subsequently,the established models were imported into the 3-Matic software for disc reconstruction.The perfected models were then imported into Hypermesh software for meshing of the vertebrae,nucleus pulposus,annulus fibrosus,and ligaments,creating valid geometric models.After assigning material properties,the final models were imported into ABAQUS software to observe the joint motion range of the C1-C7 cervical vertebrae segments under different conditions,and to analyze the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and small joint cartilage of each cervical spine segment. RESULTS AND CONCLUSION:(1)In six different conditions,the joint motion range of the C1 vertebra in the cervical spine models of both normal adolescent and adolescent patient with cervical disc herniation was higher than that of the other vertebrae.Additionally,the joint motion range of each cervical spine segment in normal adolescent was greater than that in adolescent patient with cervical disc herniation.(2)In the cervical spine model of normal adolescent,the maximum stress values in the annulus fibrosus and nucleus pulposus were found on the left side during C2-3 flexion conditions(0.43 MPa and 0.17 MPa,respectively).In the cervical spine model of adolescent patient with cervical disc herniation,the maximum stress values were found on the left side during C7-T1 flexion conditions(0.54 MPa and 0.18 MPa,respectively).(3)In the cervical spine model of normal adolescent,the maximum stress value on the endplate was found on the left side of the upper endplate of C3 during flexion conditions(1.46 MPa).In the model of adolescent patient with cervical disc herniation,the maximum stress value on the endplate was found on the left side of the lower endplate of C7 during flexion conditions(1.32 MPa).(4)In the cervical spine model of normal adolescent,the maximum stress value in the small joint cartilage was found in the C2-3 left rotation conditions(0.98 MPa).In adolescent patient with cervical disc herniation,the stress in the small joint cartilage significantly increased under different conditions,especially in C1-2,with the maximum stress found during left flexion(3.50 MPa).(5)It is concluded that compared to normal adolescent,adolescent patient with cervical disc herniation exhibits altered cervical curvature and a decrease in overall joint motion range in the cervical spine.In adolescent with cervical disc herniation,there is a significant increase in stress on the annulus fibrosus,nucleus pulposus,and endplates in the C7-T1 segment.The stress on the left articular cartilage of the C1-2 is notable.Abnormal cervical curvature may be the primary factor causing these stress changes.
3.Constructing a model of degenerative scoliosis using finite element method:biomechanical analysis in etiology and treatment
Kai HE ; Wenhua XING ; Shengxiang LIU ; Xianming BAI ; Chen ZHOU ; Xu GAO ; Yu QIAO ; Qiang HE ; Zhiyu GAO ; Zhen GUO ; Aruhan BAO ; Chade LI
Chinese Journal of Tissue Engineering Research 2025;29(3):572-578
BACKGROUND:Degenerative scoliosis is defined as a condition that occurs in adulthood with a coronal cobb angle of the spine>10° accompanied by sagittal deformity and rotational subluxation,which often produces symptoms of spinal cord and nerve compression,such as lumbar pain,lower limb pain,numbness,weakness,and neurogenic claudication.The finite element method is a mechanical analysis technique for computer modelling,which can be used for spinal mechanics research by building digital models that can realistically restore the human spine model and design modifications. OBJECTIVE:To review the application of finite element method in the etiology and treatment of degenerative scoliosis. METHODS:The literature databases CNKI,PubMed,and Web of Science were searched for articles on the application of finite element method in degenerative scoliosis published before October 2023.Search terms were"finite element analysis,biomechanics,stress analysis,degenerative scoliosis,adult spinal deformity"in Chinese and English.Fifty-four papers were finally included. RESULTS AND CONCLUSION:(1)The biomechanical findings from the degenerative scoliosis model constructed using the finite element method were identical to those from the in vivo experimental studies,which proves that the finite element method has a high practical value in degenerative scoliosis.(2)The study of the etiology and treatment of degenerative scoliosis by the finite element method is conducive to the prevention of the occurrence of the scoliosis,slowing down the progress of the scoliosis,the development of a more appropriate treatment plan,the reduction of complications,and the promotion of the patients'surgical operation.(3)The finite element method has gradually evolved from a single bony structure to the inclusion of soft tissues such as muscle ligaments,and the small sample content is increasingly unable to meet the research needs.(4)The finite element method has much room for exploration in degenerative scoliosis.
4.Effects of astragalus polysaccharide on proliferation and invasion of triple negative breast cancer cells
The Chinese Journal of Clinical Pharmacology 2024;40(2):269-272
Through biological analysis of breast cancer data in gene expression omnibus(GEO),The Cancer Genome Atlas(TCGA)and other databases,this study screened the differentially expressed genes in triple-negative breast cancer compared with other breast cancer subtypes,so as to mine drug targets according to its characteristics and provide some reference for the identification and prognosis of triple-negative breast cancer.Based on the analysis of bio-informatics,it showed that triple negative breast cancer has characteristic manifestations in the process of cell cycle and estrogen signaling pathway.The screened 10 hub genes can better predict and diagnose triple negative breast cancer.The drug targets exploring rusults suggest that pyrazolanthrone,alvocidib and so on are potential drugs which have research and development value.
5.The Nomogram model was established for the risk assessment of intestinal colonization with neonatal CRKP
Xing HU ; Qingrong LI ; Jiang LI ; Wei HE ; Ping'an HE ; Mei LV ; Xu YANG
The Journal of Practical Medicine 2024;40(2):231-236
Objective To establish a Nomogram model for assessing the risk of intestinal colonization by Carbapenem-Resistant Klebsiella pneumoniae(CRKP)to determine the specific probability of colonization and adopt individualized prevention strategies for the purpose of reducing the occurrence of colonization and secondary infection of neonatal CRKP.Methods A total of 187 neonates hospitalized between January 2021 and October 2022 and diagnosed with CRKP colonization by rectal swab/fecal culture as well drug sensitivity identification 48 h after admission were assigned to the CRKP group.Another 187 neonates without non-CRKP colonization during the same period were set as the non-CRKP group.All the data of the two groups were used for a retrospective analysis.The caret package in R 4.2.1 was used to randomly divide the 374 cases into the model group and validation group at a ratio of 3∶1.Then the glmnet package in R 4.2.1 was used to conduct a LASSO regression analysis over the data from the model group to determine the predictive factors for modeling and the rms software package was used to build a Nomogram model.The pROC and rms packages in R 4.2.1 were used to examine the data,analyzing the consistency indexes(Cindex),receiver operating characteristic curves(ROC),and area under the curves(AUC)and performing the internal and external validation of the efficacy of the Nomogram model via the calibration curves.Results LASSO regression analysis determined eight predictors from the 35 factors probably affecting neonatal CRKP colonization:gender,cesarean section,breastfeeding,nasogastric tube,enema,carbapenems,probiotics,and hospital stay.The Nomogram model constructed using these eight predictors as variables could predict CRKP colonization to a moderate extent,with the area under the ROC curve of 0.835 and 0.800 in the model and validation group,respectively.The Hos-mer-Lemeshow test showed that the predicted probability was highly consistent with the actual probability(the modeling group:P = 0.678>0.05;the validation group:P = 0.208>0.05),presenting a higher degree of fitting.Conclusion The Nomogram model containing such variables as gender,cesarean section,breastfeeding,nasogastric tube,enema,carbapenems,probiotics,and hospital stay is more effective in predicting the risk of neonatal CRKP colonization.Therefore,preventive measures should be individualized based on the colonization probability predicted by the Nomogram model in order to keep neonates from CRKP colonization and reduce the incidence of secondary CRKP infections among them.
6.Biological scaffold materials and printing technology for repairing bone defects
Xiangyu KONG ; Xing WANG ; Zhiwei PEI ; Jiale CHANG ; Siqin LI ; Ting HAO ; Wanxiong HE ; Baoxin ZHANG ; Yanfei JIA
Chinese Journal of Tissue Engineering Research 2024;28(3):479-485
BACKGROUND:In recent years,with the development of biological scaffold materials and bioprinting technology,tissue-engineered bone has become a research hotspot in bone defect repair. OBJECTIVE:To summarize the current treatment methods for bone defects,summarize the biomaterials and bioprinting technology for preparing tissue-engineered bone scaffolds,and explore the application of biomaterials and printing technology in tissue engineering and the current challenges. METHODS:Search terms were"bone defect,tissue engineering,biomaterials,3D printing technology,4D printing technology,bioprinting,biological scaffold,bone repair"in Chinese and English.Relevant documents published from January 1,2009 to December 1,2022 were retrieved on CNKI,PubMed and Web of Science databases.After being screened by the first author,high-quality references were added.A total of 93 articles were included for review. RESULTS AND CONCLUSION:The main treatment methods for bone defects include bone transplantation,membrane-guided regeneration,gene therapy,bone tissue engineering,etc.The best treatment method is still uncertain.Bone tissue engineering technology is a new technology for the treatment of bone defects.It has become the focus of current research by constructing three-dimensional structures that can promote the proliferation and differentiation of osteoblasts and enhance the ability of bone formation.Biological scaffold materials are diverse,with their characteristics,advantages and disadvantages.A single biological material cannot meet the demand for tissue-engineered bone for the scaffold.Usually,multiple materials are combined to complement each other,which is to meet the demand for mechanical properties while taking into account the biological properties of the scaffold.Bioprinting technology can adjust the pore of the scaffold,build a complex spatial structure,and is more conducive to cell adhesion,proliferation and differentiation.The emerging 4D printing technology introduces"time"as the fourth dimension to make the prepared scaffold dynamic.With the synchronous development of smart materials,4D printing technology provides the possibility of efficient repair of bone defects in the future.
8.Biallelic variants in RBM42 cause a multisystem disorder with neurological, facial, cardiac, and musculoskeletal involvement.
Yiyao CHEN ; Bingxin YANG ; Xiaoyu Merlin ZHANG ; Songchang CHEN ; Minhui WANG ; Liya HU ; Nina PAN ; Shuyuan LI ; Weihui SHI ; Zhenhua YANG ; Li WANG ; Yajing TAN ; Jian WANG ; Yanlin WANG ; Qinghe XING ; Zhonghua MA ; Jinsong LI ; He-Feng HUANG ; Jinglan ZHANG ; Chenming XU
Protein & Cell 2024;15(1):52-68
Here, we report a previously unrecognized syndromic neurodevelopmental disorder associated with biallelic loss-of-function variants in the RBM42 gene. The patient is a 2-year-old female with severe central nervous system (CNS) abnormalities, hypotonia, hearing loss, congenital heart defects, and dysmorphic facial features. Familial whole-exome sequencing (WES) reveals that the patient has two compound heterozygous variants, c.304C>T (p.R102*) and c.1312G>A (p.A438T), in the RBM42 gene which encodes an integral component of splicing complex in the RNA-binding motif protein family. The p.A438T variant is in the RRM domain which impairs RBM42 protein stability in vivo. Additionally, p.A438T disrupts the interaction of RBM42 with hnRNP K, which is the causative gene for Au-Kline syndrome with overlapping disease characteristics seen in the index patient. The human R102* or A438T mutant protein failed to fully rescue the growth defects of RBM42 ortholog knockout ΔFgRbp1 in Fusarium while it was rescued by the wild-type (WT) human RBM42. A mouse model carrying Rbm42 compound heterozygous variants, c.280C>T (p.Q94*) and c.1306_1308delinsACA (p.A436T), demonstrated gross fetal developmental defects and most of the double mutant animals died by E13.5. RNA-seq data confirmed that Rbm42 was involved in neurological and myocardial functions with an essential role in alternative splicing (AS). Overall, we present clinical, genetic, and functional data to demonstrate that defects in RBM42 constitute the underlying etiology of a new neurodevelopmental disease which links the dysregulation of global AS to abnormal embryonic development.
Female
;
Animals
;
Mice
;
Humans
;
Child, Preschool
;
Intellectual Disability/genetics*
;
Heart Defects, Congenital/genetics*
;
Facies
;
Cleft Palate
;
Muscle Hypotonia
9.GLUL stabilizes N-Cadherin by antagonizing β-Catenin to inhibit the progresses of gastric cancer.
Qiwei JIANG ; Yong LI ; Songwang CAI ; Xingyuan SHI ; Yang YANG ; Zihao XING ; Zhenjie HE ; Shengte WANG ; Yubin SU ; Meiwan CHEN ; Zhesheng CHEN ; Zhi SHI
Acta Pharmaceutica Sinica B 2024;14(2):698-711
Glutamate-ammonia ligase (GLUL, also known as glutamine synthetase) is a crucial enzyme that catalyzes ammonium and glutamate into glutamine in the ATP-dependent condensation. Although GLUL plays a critical role in multiple cancers, the expression and function of GLUL in gastric cancer remain unclear. In the present study, we have found that the expression level of GLUL was significantly lower in gastric cancer tissues compared with adjacent normal tissues, and correlated with N stage and TNM stage, and low GLUL expression predicted poor survival for gastric cancer patients. Knockdown of GLUL promoted the growth, migration, invasion and metastasis of gastric cancer cells in vitro and in vivo, and vice versa, which was independent of its enzyme activity. Mechanistically, GLUL competed with β-Catenin to bind to N-Cadherin, increased the stability of N-Cadherin and decreased the stability of β-Catenin by alerting their ubiquitination. Furthermore, there were lower N-Cadherin and higher β-Catenin expression levels in gastric cancer tissues compared with adjacent normal tissues. GLUL protein expression was correlated with that of N-Cadherin, and could be the independent prognostic factor in gastric cancer. Our findings reveal that GLUL stabilizes N-Cadherin by antagonizing β-Catenin to inhibit the progress of gastric cancer.
10.Study on the immunotoxicity effect of triphenyl phosphate on thymus and its mechanism in mice
Tianlan LI ; Wei ZHANG ; Xun XU ; Xing LI ; Haoqi HE ; Bohai DU ; Li LI ; Ming SHI
China Occupational Medicine 2024;51(3):272-279
Objective To investigate the immunotoxicity effect of triphenyl phosphate (TPHP) on thymus tissue of mice, and analyze the related mechanism. Methods Specific pathogen free BALB/c mice were randomly divided into control group, low-, medium- and high-dose groups, with 12 mice per group (equal gender distribution). Mice in these four groups were orally administered doses of 0, 1, 10, and 150 mg/kg body weight of TPHP daily for 60 days. After the exposure, the complete blood count of mice was detected, thymus tissue was collected, coefficient of thymus organs was calculated, and the histopathology changes of thymus were observed. Real-time quantitative polymerase chain reaction was used to assess the expression of genes related to inflammation, oxidative stress, cellular autophagy, and apoptosis in thymic tissues. Results During the exposure period, male mice in the high-dose group had poor fur condition, whisker loss, and increased irritability, while these phenomena were not observed in female mice. At the end of the exposure period, there were no significant changes in mice body weight or thymus organ coefficients among the groups. However, male mice in the high-dose group showed cellular apoptotic changes in the thymic tissue. The amount of white blood cell, lymphocyte, neutrophil granulocyte, red blood cell distribution width, platelet and the plateletcrit of male mice was lower in the high-dose group than that in the control group (all P<0.05). The relative mRNA expression of interleukin (Il)-1β, Il-6, catalase (Cat), P62, as well as the ratio of B-cell lymphoma 2 (Bcl-2) associated X protein (Bax)/Bcl-2 in thymic tissue of male mice were higher in the low-dose group than that in the control group (all P<0.05). The relative mRNA expression of nuclear factor erythroid-2 related factor 2 (Nrf2), superoxide dismutase 1 (Sod1), glutathione peroxidase 1 (Gpx1), P62, as well as the ratio of Bax/Bcl-2 in the thymic tissue of male mice were higher in the medium-dose group than that in the control group (all P<0.05). The relative mRNA expression of Nrf2, Cat, Sod1, Gpx1, P62, cysteinyl aspartate specific proteinase-3, as well as the ratio of Bax/Bcl-2 in the thymic tissue of male mice were higher in the high-dose group than that in the control group (all P<0.05). The relative mRNA expression of Il-1β and the ratio of Bax/Bcl-2 in thymic tissue of female mice were higher in the low- and medium-dose group (all P<0.05), while the relative mRNA expression of interferon-γ, Nrf2, Cat, P62, microtubule-associated protein light chain 3, as well as the ratio of Bax/Bcl-2 in thymic tissue of female mice were higher in the high-dose group than that in the control group (all P<0.05). Conclusion Although TPHP exposure had not significantly affected the body weight, thymus organ coefficient and histopathology of mice, it induced changes in oxidative stress-related indicators in thymic tissue, promoted cellular autophagy, apoptosis, and inflammation in the thymic tissue, with observed gender difference.

Result Analysis
Print
Save
E-mail