1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Application of Yttrium-90 microsphere selective internal radiation therapy in downstaging and conversion of hepatocellular carcinoma: a case report
Ziwei LIANG ; Tiantian ZHANG ; Yong LIAO ; Xin HUANG ; Bin LIANG ; Zhongbin HANG ; Yan ZHANG ; Lin ZHANG ; Xiaobin FENG ; Li HUO
Chinese Journal of Clinical Medicine 2025;32(1):41-45
This case report describes a 68-year-old male patient diagnosed with primary hepatocellular carcinoma (HCC). After receiving Yttrium-90 microsphere selective internal radiation therapy (90Y-SIRT), the tumor significantly reduced in size, and tumor markers alpha fetoprotein (AFP) and abnormal prothrombin (PIVKA-Ⅱ) decreased. Postoperative pathological results showed minimal residual tumor cells, indicating that 90Y-SIRT has good efficacy and safety in downstaging and conversion of HCC, thereby facilitating subsequent surgical resection.
3.Development and validation of a prediction score for subtype diagnosis of primary aldosteronism.
Ping LIU ; Wei ZHANG ; Jiao WANG ; Hongfei JI ; Haibin WANG ; Lin ZHAO ; Jinbo HU ; Hang SHEN ; Yi LI ; Chunhua SONG ; Feng GUO ; Xiaojun MA ; Qingzhu WANG ; Zhankui JIA ; Xuepei ZHANG ; Mingwei SHAO ; Yi SONG ; Xunjie FAN ; Yuanyuan LUO ; Fangyi WEI ; Xiaotong WANG ; Yanyan ZHAO ; Guijun QIN
Chinese Medical Journal 2025;138(23):3206-3208
4.Research progress on the mechanisms of Tau phosphorylation and its kinases in hypoxic-ischemic brain damage.
Qi-Yi HUANG ; You XIANG ; Jia-Hang TANG ; Li-Jia CHEN ; Kun-Lin LI ; Wei-Fang ZHAO ; Qian WANG
Acta Physiologica Sinica 2025;77(1):139-150
Hypoxic-ischemic brain damage (HIBD) is one of the main causes of disability in middle-aged and elderly people, as well as high mortality rates and long-term physical impairments in newborns. The pathological manifestations of HIBD include neuronal damage and loss of myelin sheaths. Tau protein is an important microtubule-associated protein in brain, exists in neurons and oligodendrocytes, and regulates various cellular activities such as cell differentiation and maturation, axonal transport, and maintenance of cellular cytoskeleton structure. Phosphorylation is a common chemical modification of Tau. In physiological condition, it maintains normal cell cytoskeleton and biological functions by regulating Tau structure and function. In pathological conditions, it leads to abnormal Tau phosphorylation and influences its structure and functions, resulting in Tauopathies. Studies have shown that brain hypoxia-ischemia could cause abnormal alteration in Tau phosphorylation, then participating in the pathological process of HIBD. Meanwhile, brain hypoxia-ischemia can induce oxidative stress and inflammation, and multiple Tau protein kinases are activated and involved in Tau abnormal phosphorylation. Therefore, exploring specific molecular mechanisms by which HIBD activates Tau protein kinases, and elucidating their relationship with abnormal Tau phosphorylation are crucial for future researches on HIBD related treatments. This review aims to focus on the mechanisms of the role of Tau phosphorylation in HIBD, and the potential relationships between Tau protein kinases and Tau phosphorylation, providing a basis for intervention and treatment of HIBD.
Humans
;
tau Proteins/physiology*
;
Phosphorylation
;
Hypoxia-Ischemia, Brain/physiopathology*
;
Animals
;
Oxidative Stress
5.Research progress on the comorbidity mechanism of sarcopenia and obesity in the aging population.
Hao-Dong TIAN ; Yu-Kun LU ; Li HUANG ; Hao-Wei LIU ; Hang-Lin YU ; Jin-Long WU ; Han-Sen LI ; Li PENG
Acta Physiologica Sinica 2025;77(5):905-924
The increasing prevalence of aging has led to a rising incidence of comorbidity of sarcopenia and obesity, posing significant burdens on socioeconomic and public health. Current research has systematically explored the pathogenesis of each condition; however, the mechanisms underlying their comorbidity remain unclear. This study reviews the current literature on sarcopenia and obesity in the aging population, focusing on their shared biological mechanisms, which include loss of autophagy, abnormal macrophage function, mitochondrial dysfunction, and reduced sex hormone secretion. It also identifies metabolic mechanisms such as insulin resistance, vitamin D metabolism abnormalities, dysregulation of iron metabolism, decreased levels of nicotinamide adenine dinucleotide, and gut microbiota imbalances. Additionally, this study also explores the important role of genetic factors, such as alleles and microRNAs, in the co-occurrence of sarcopenia and obesity. A better understanding of these mechanisms is vital for developing clinical interventions and preventive strategies.
Humans
;
Sarcopenia/physiopathology*
;
Obesity/physiopathology*
;
Aging/physiology*
;
Autophagy/physiology*
;
Insulin Resistance
;
Comorbidity
;
Vitamin D/metabolism*
;
Gonadal Steroid Hormones/metabolism*
;
Gastrointestinal Microbiome
;
Mitochondria
;
MicroRNAs
6.Clinical analysis of 6 cases of diffuse panbronchiolitis in children.
Li-Xin DENG ; De-Hui CHEN ; Yu-Neng LIN ; Shang-Zhi WU ; Jia-Xing XU ; Zhan-Hang HUANG ; Ying-Ying GU ; Jun-Xiang FENG
Chinese Journal of Contemporary Pediatrics 2025;27(3):334-339
OBJECTIVES:
To analyze the clinical characteristics of diffuse panbronchiolitis (DPB) in children and to enhance the clinical diagnosis and treatment of this disease.
METHODS:
A retrospective analysis was conducted on the clinical data of 6 children diagnosed with DPB who were hospitalized at The First Affiliated Hospital of Guangzhou Medical University from January 2011 to December 2019.
RESULTS:
Among the 6 patients, there were 2 males and 4 females; the age at diagnosis ranged from 7 to 12 years. All patients presented with cough, sputum production, and exertional dyspnea, and all had a history of sinusitis. Two cases showed positive serum cold agglutinin tests, and 5 cases exhibited pathological changes consistent with chronic bronchiolitis. High-resolution chest CT in all patients revealed centrilobular nodules diffusely distributed throughout both lungs with a tree-in-bud appearance. Five patients received low-dose azithromycin maintenance therapy, but 3 showed inadequate treatment response. After empirical anti-tuberculosis treatment, non-tuberculous Mycobacteria were found in the bronchoalveolar lavage fluid. Follow-up over 2 years showed 1 case cured, 3 cases significantly improved, and 2 cases partially improved.
CONCLUSIONS
The clinical presentation of DPB is non-specific and can easily lead to misdiagnosis. In cases where DPB is clinically diagnosed but does not show improvement with low-dose azithromycin treatment, special infections should be considered.
Humans
;
Male
;
Female
;
Bronchiolitis/drug therapy*
;
Retrospective Studies
;
Child
;
Haemophilus Infections/diagnosis*
7.The cutting-edge progress of novel biomedicines in ovulatory dysfunction therapy.
Xuzhi LIANG ; Shiyu ZHANG ; Dahai LI ; Hao LIANG ; Yueping YAO ; Xiuhong XIA ; Hang YU ; Mingyang JIANG ; Ying YANG ; Ming GAO ; Lin LIAO ; Jiangtao FAN
Acta Pharmaceutica Sinica B 2025;15(10):5145-5166
Ovulatory dysfunction (OD) is one of the main causes of infertility in women of childbearing age, which not only affects their reproductive ability, but also physical and mental health. Traditional treatment strategies have limited efficacies, and the emergence of biomedicines provides a promising alternative solution via the strategies of combining engineered design with modern advanced technology. This review explores the pathophysiological characteristics and related induction mechanisms of OD, and evaluates the current cutting-edge advances in its treatments. It emphasizes the potentials of biomedicines strategies such as hydrogels, nanoparticles and extracellular vesicles in improving therapeutic precision and efficacy. By mimicking natural physiological processes, and achieving controlled drug release, these advanced drug carriers are expected to address the challenges in ovarian microenvironment reprogramming, tissue repair, and metabolic and immune regulation. Despite the promising progress, there are still challenges in terms of biomedical complexity, differences between animal models and human physiology, and the demand for intelligent drug carriers in the therapy of OD. Future researches are mainly dedicated to developing precise personalized biomedicines in OD therapy through interdisciplinary collaboration, promoting the development of reproductive regenerative medicine.
9.miR-302a-3p targeting lysosomal-associated membrane protein 5 inhibits the invasion and metastasis of oral squamous cell carcinoma.
Li YU ; Tiejun ZHOU ; Xiao WU ; Xinhong LIN ; Xiaoyan ZHANG ; Yongxian LAI ; Xinyue LIAO ; Hang SI ; Yun FENG ; Jie JIAN ; Yan FENG
West China Journal of Stomatology 2025;43(4):547-558
OBJECTIVES:
This study aimed to explore the expression of lysosomal-associated membrane protein 5 (LAMP5) and microRNA (miR)-302a-3p in oral squamous cell carcinoma (OSCC) and their functional mechanism on the invasion and metastasis of OSCC.
METHODS:
The expression of LAMP5 in OSCC and its sensitivity as a prognostic indicator were analyzed on the basis of The Cancer Genome Atlas database. Western blot, quantitative reverse transcription polymerase chain reaction, and cell immunocytochemistry were used to detect the expression of LAMP5 in OSCC tissues and cells. The effect of LAMP5 on the proliferation, migration, and invasion of OSCC cells was evaluated through cell counting kit-8, immunocytochemistry, migration, and invasion assays, respectively. The miRNA targeting prediction websites were used to predict the miR that regulates LAMP5 and verify the targeted regulatory effect of miR-302a-3p on LAMP5. The effect of LAMP5 knockdown on OSCC tumor growth was evaluated in a nude mouse tumorigenesis model.
RESULTS:
LAMP5 was highly expressed in OSCC tissues and cells. It showed high sensitivity in the early diagnosis of OSCC. LAMP5 knockdown significantly inhibited the proliferation, migration, and invasion of OSCC cells, whereas LAMP5 overexpression increased these cell activities. The expression of LAMP5 was regulated by miR-302a-3p. In vivo, LAMP5 knockdown significantly inhibited the growth of OSCC tumor.
CONCLUSIONS
LAMP5 promotes the malignant progression of OSCC by enhancing the proliferation, migration, and invasion of OSCC cells. The expression of LAMP5 is negatively regulated by miR-302a-3p.
MicroRNAs/metabolism*
;
Mouth Neoplasms/metabolism*
;
Humans
;
Animals
;
Carcinoma, Squamous Cell/genetics*
;
Neoplasm Invasiveness
;
Cell Proliferation
;
Mice, Nude
;
Cell Movement
;
Lysosomal Membrane Proteins/genetics*
;
Mice
;
Cell Line, Tumor
;
Neoplasm Metastasis
10.Research Progress on End-Tidal Carbon Dioxide Detection Technology Based on Non-Dispersive Infrared Method
Yanan LIU ; Mingyue LI ; Fuhao KANG ; Lin HUANG ; Yan HANG ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2024;48(2):203-207
The concentration of end-tidal carbon dioxide is one of the important indicators for evaluating whether the human respiratory system is normal.Accurately detecting of end-tidal carbon dioxide is of great significance in clinical practice.With the continuous promotion of the localization of end-tidal carbon dioxide monitoring technology,its application in clinical practice in China has become increasingly widespread in recent years.The study is based on the non-dispersive infrared method and comprehensively elaborates on the detection principle,gas sampling methods,key technologies,and technological progress of end-tidal carbon dioxide detection technology.It comprehensively introduces the current development status of this technology and provides reference for application promotion and further improvement.

Result Analysis
Print
Save
E-mail