1.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*
2.Central venous oxygen saturation changes as a reliable predictor of the change of CI in septic shock: To explore potential influencing factors.
Ran AN ; Xi-Xi WAN ; Yan CHEN ; Run DONG ; Chun-Yao WANG ; Wei JIANG ; Li WENG ; Bin DU
Chinese Journal of Traumatology 2025;28(1):43-49
PURPOSE:
Assessing fluid responsiveness relying on central venous oxygen saturation (ScvO2) yields varied outcomes across several studies. This study aimed to determine the ability of the change in ScvO2 (ΔScvO2) to detect fluid responsiveness in ventilated septic shock patients and potential influencing factors.
METHODS:
In this prospective, single-center study, all patients conducted from February 2023 to January 2024 received fluid challenge. Oxygen consumption was measured by indirect calorimetry, and fluid responsiveness was defined as an increase in cardiac index (CI) ≥ 10% measured by transthoracic echocardiography. Multivariate linear regression analysis was conducted to evaluate the impact of oxygen consumption, arterial oxygen saturation, CI, and hemoglobin on ScvO2 and its change before and after fluid challenge. The Shapiro-Wilk test was used for the normality of continuous data. Data comparison between fluid responders and non-responders was conducted using a two-tailed Student t-test, Mann Whitney U test, and Chi-square test. Paired t-tests were used for normally distributed data, while the Wilcoxon signed-rank test was used for skewed data, to compare data before and after fluid challenge.
RESULTS:
Among 49 patients (31 men, aged (59 ± 18) years), 27 were responders. The patients had an acute physiology and chronic health evaluation II score of 24 ± 8, a sequential organ failure assessment score of 11 ± 4, and a blood lactate level of (3.2 ± 3.1) mmol/L at enrollment. After the fluid challenge, the ΔScvO2 (mmHg) in the responders was greater than that in the non-responders (4 ± 6 vs. 1 ± 3, p = 0.019). Multivariate linear regression analysis suggested that CI was the only independent influencing factor of ScvO2, with R2 = 0.063, p = 0.008. After the fluid challenge, the change in CI became the only contributing factor to ΔScvO2 (R2 = 0.245, p < 0.001). ΔScvO2 had a good discriminatory ability for the responders and non-responders with a threshold of 4.4% (area under the curve = 0.732, p = 0.006).
CONCLUSION
ΔScvO2 served as a reliable surrogate marker for ΔCI and could be utilized to assess fluid responsiveness, given that the change in CI was the sole contributing factor to the ΔScvO2. In stable hemoglobin conditions, the absolute value of ScvO2 could serve as a monitoring indicator for adequate oxygen delivery independent of oxygen consumption.
Humans
;
Shock, Septic/blood*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Oxygen Saturation
;
Aged
;
Fluid Therapy
;
Oxygen/blood*
;
Oxygen Consumption
;
Adult
3.Association of redundant foreskin with sexual dysfunction: a cross-sectional study from 5700 participants.
Yuan-Qi ZHAO ; Nian LI ; Xiao-Hua JIANG ; Yang-Yang WAN ; Bo XU ; Xue-Chun HU ; Yi-Fu HOU ; Ji-Yan LI ; Shun BAI
Asian Journal of Andrology 2025;27(1):90-95
A previous study showed that the length of the foreskin plays a role in the risk of sexually transmitted infections and chronic prostatitis, which can lead to poor quality of sexual life. Here, the association between foreskin length and sexual dysfunction was evaluated. A total of 5700 participants were recruited from the andrology clinic at The First Affiliated Hospital of University of Science and Technology of China (Hefei, China). Clinical characteristics, including foreskin length, were collected, and sexual function was assessed by the International Index of Erectile Function-5 (IIEF-5) and Premature Ejaculation Diagnostic Tool (PEDT) questionnaires. Men with sexual dysfunction were more likely to have redundant foreskin than men without sexual dysfunction. Among the 2721 erectile dysfunction (ED) patients and 1064 premature ejaculation (PE) patients, 301 (11.1%) ED patients and 135 (12.7%) PE patients had redundant foreskin, respectively. Men in the PE group were more likely to have redundant foreskin than men in the non-PE group ( P = 0.004). Logistic regression analyses revealed that the presence of redundant foreskin was associated with increased odds of moderate/severe ED (adjusted odds ratio [aOR] = 1.31, adjusted P = 0.04), moderate PE (aOR = 1.38, adjusted P = 0.02), and probable PE (aOR = 1.37, adjusted P = 0.03) after adjusting for confounding variables. Our study revealed a positive correlation between the presence of redundant foreskin and the risk of sexual dysfunction, especially in PE patients. Assessment of the length of the foreskin during routine clinical diagnosis may provide information for patients with sexual dysfunction.
Humans
;
Male
;
Foreskin
;
Cross-Sectional Studies
;
Adult
;
Erectile Dysfunction/epidemiology*
;
Premature Ejaculation/epidemiology*
;
Middle Aged
;
China/epidemiology*
;
Surveys and Questionnaires
;
Sexual Dysfunction, Physiological/epidemiology*
;
Young Adult
4.Prediction of testicular histology in azoospermia patients through deep learning-enabled two-dimensional grayscale ultrasound.
Jia-Ying HU ; Zhen-Zhe LIN ; Li DING ; Zhi-Xing ZHANG ; Wan-Ling HUANG ; Sha-Sha HUANG ; Bin LI ; Xiao-Yan XIE ; Ming-De LU ; Chun-Hua DENG ; Hao-Tian LIN ; Yong GAO ; Zhu WANG
Asian Journal of Andrology 2025;27(2):254-260
Testicular histology based on testicular biopsy is an important factor for determining appropriate testicular sperm extraction surgery and predicting sperm retrieval outcomes in patients with azoospermia. Therefore, we developed a deep learning (DL) model to establish the associations between testicular grayscale ultrasound images and testicular histology. We retrospectively included two-dimensional testicular grayscale ultrasound from patients with azoospermia (353 men with 4357 images between July 2017 and December 2021 in The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China) to develop a DL model. We obtained testicular histology during conventional testicular sperm extraction. Our DL model was trained based on ultrasound images or fusion data (ultrasound images fused with the corresponding testicular volume) to distinguish spermatozoa presence in pathology (SPP) and spermatozoa absence in pathology (SAP) and to classify maturation arrest (MA) and Sertoli cell-only syndrome (SCOS) in patients with SAP. Areas under the receiver operating characteristic curve (AUCs), accuracy, sensitivity, and specificity were used to analyze model performance. DL based on images achieved an AUC of 0.922 (95% confidence interval [CI]: 0.908-0.935), a sensitivity of 80.9%, a specificity of 84.6%, and an accuracy of 83.5% in predicting SPP (including normal spermatogenesis and hypospermatogenesis) and SAP (including MA and SCOS). In the identification of SCOS and MA, DL on fusion data yielded better diagnostic performance with an AUC of 0.979 (95% CI: 0.969-0.989), a sensitivity of 89.7%, a specificity of 97.1%, and an accuracy of 92.1%. Our study provides a noninvasive method to predict testicular histology for patients with azoospermia, which would avoid unnecessary testicular biopsy.
Humans
;
Male
;
Azoospermia/diagnostic imaging*
;
Deep Learning
;
Testis/pathology*
;
Retrospective Studies
;
Adult
;
Ultrasonography/methods*
;
Sperm Retrieval
;
Sertoli Cell-Only Syndrome/diagnostic imaging*
5.Plasma lipidomics-based exploration of potential biomarkers of metastasis in pediatric medulloblastoma.
Chun-Jing YANG ; Xi-Qiao XU ; Li BAO ; Wan-Shui WU ; De-Chun JIANG ; Zheng-Yuan SHI
Chinese Journal of Contemporary Pediatrics 2025;27(11):1384-1390
OBJECTIVES:
To identify potential plasma lipidomic biomarkers that distinguish non-metastatic medulloblastoma (nmMB) from metastatic medulloblastoma (mMB) in children.
METHODS:
In this prospective study, 17 children with mMB and 20 matched children with nmMB were enrolled. Plasma samples were analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Lipid metabolites were evaluated for their associations and diagnostic performance.
RESULTS:
Orthogonal partial least squares discriminant analysis based on lipid profiles clearly separated nmMB from mMB, and 14 differential lipids were identified, including DG(18:2/20:4/0:0) and SM(d18:1/20:0). Receiver operating characteristic analysis showed nine metabolites with area under the curve greater than 0.7. Differential lipids were enriched in sphingolipid, glycerophospholipid, and arachidonic acid metabolism, suggesting an association with the metastatic phenotype.
CONCLUSIONS
Plasma lipidomics provides a new approach to identify mMB, and the identified lipid metabolites may support early diagnosis and treatment, prognostic assessment, and selection of therapeutic targets for metastatic medulloblastoma.
Humans
;
Medulloblastoma/diagnosis*
;
Lipidomics
;
Child
;
Male
;
Female
;
Child, Preschool
;
Cerebellar Neoplasms/blood*
;
Biomarkers, Tumor/blood*
;
Neoplasm Metastasis
;
Prospective Studies
;
Adolescent
;
Lipids/blood*
6.The Effect of Histone Deacetylase on the Pathogenesis of Burkitt Lymphoma.
Chun-Tuan LI ; Bing-Bing LI ; Dan WENG ; Wan-Lin YANG ; Shao-Xiong WANG ; Yan ZHENG ; Dan WANG ; Xiong-Peng ZHU
Journal of Experimental Hematology 2025;33(3):796-801
OBJECTIVE:
To investigate the effects of histone deacetylase (HDAC) levels on the proliferation and apoptosis of Burkitt lymphoma cells, and the changes in related signaling molecules in the PI3K/AKT/mTOR signaling pathway, so as to explore the pathogenesis of Burkitt lymphoma.
METHODS:
HDAC levels in Burkitt lymphoma were detected by RT-PCR and Western blot. CA46 and RAJI cells were treated with the HDAC selective inhibitor VPA. CCK8 assay was used to detect the proliferation ability of cells. Western Blot was used to measure the expression of apoptosis-related proteins, PI3K/AKT/mTOR signaling pathway proteins and their phosphorylation levels.
RESULTS:
The expression levels of classⅠ HDAC in Burkitt lymphoma were higher than those in normal cells, and the HDAC1 inhibitor VPA could inhibit the proliferation of CA46 and RAJI cells. VPA decreased HDAC expression in CA46 and RAJI cells, inhibited the phosphorylation of PI3K/AKT/mTOR pathway molecules AKT and p70S6K, increased the expression of apoptotic proteins Cleaved Caspase-3, Cleaved Caspase-8, Cleaved Caspase-9 and Bax, and decreased the expression of anti-apoptotic proteins Bcl-2 and PARP.
CONCLUSION
Inhibition of HDAC activity can Attenuate the proliferation of Burkitt lymphoma cells and induce apoptosis by inhibiting the PI3K/AKT/mTOR signaling pathway activity.
Humans
;
Burkitt Lymphoma/pathology*
;
Apoptosis
;
Cell Proliferation
;
Signal Transduction
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Cell Line, Tumor
;
Histone Deacetylases/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Histone Deacetylase Inhibitors/pharmacology*
;
Phosphorylation
7.NIR-II-activated whole-cell vaccine with ultra-efficient semiconducting diradical oligomers for breast carcinoma growth and metastasis inhibition.
Yijian GAO ; Yachao ZHANG ; Yujie MA ; Xiliang LI ; Yu WANG ; Huan CHEN ; Yingpeng WAN ; Zhongming HUANG ; Weimin LIU ; Pengfei WANG ; Lidai WANG ; Chun-Sing LEE ; Shengliang LI
Acta Pharmaceutica Sinica B 2025;15(2):1159-1170
High-performance phototheranostics with combined photothermal therapy and photoacoustic imaging have been considered promising approaches for efficient cancer diagnosis and treatment. However, developing phototheranostic materials with efficient photothermal conversion efficiency (PCE), especially over the second near-infrared window (NIR-II, 1000-1700 nm), remains challenging. Herein, we report an ultraefficient NIR-II-activated nanomedicine with phototheranostic and vaccination capability for highly efficient in vivo tumor elimination and metastasis inhibition. The NIR-II nanomedicine of a semiconducting biradical oligomer with a motor-flexible design was demonstrated with a record-breaking PCE of 87% upon NIR-II excitation. This nanomedicine inherently features extraordinary photothermal stability, good biocompatibility, and excellent photoacoustic performance, contributing to high-contrast photoacoustic imaging in living mice and high-performance photothermal elimination of tumors. Moreover, a whole-cell vaccine based on a NIR-II nanomedicine with NIR-II-activated performance was further designed to remotely activate the antitumor immunologic memory and effectively inhibit tumor occurrence and metastasis in vivo, with good biosafety. Thus, this work paves a new avenue for designing NIR-II active semiconducting biradical materials as a promising theranostics platform and further promotes the development of NIR-II nanomedicine for personalized cancer treatment.
8.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
9.A CYP80B enzyme from Stephania tetrandra enables the 3'-hydroxylation of N-methylcoclaurine and coclaurine in the biosynthesis of benzylisoquinoline alkaloids.
Yaoting LI ; Yuhan FENG ; Wan GUO ; Yu GAO ; Jiatao ZHANG ; Lu YANG ; Chun LEI ; Yun KANG ; Yaqin WANG ; Xudong QU ; Jianming HUANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):630-640
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse group of plant metabolites renowned for their pharmacological properties. However, sustainable sources for these compounds remain limited. Consequently, researchers are focusing on elucidating BIA biosynthetic pathways and genes to explore alternative sources using synthetic biology approaches. CYP80B, a family of cytochrome P450 (CYP450) enzymes, plays a crucial role in BIA biosynthesis. Previously reported CYP80Bs are known to catalyze the 3'-hydroxylation of (S)-N-methylcoclaurine, with the N-methyl group essential for catalytic activity. In this study, we successfully cloned a full-length CYP80B gene (StCYP80B) from Stephania tetrandra (S. tetrandra) and identified its function using a yeast heterologous expression system. Both in vivo yeast feeding and in vitro enzyme analysis demonstrated that StCYP80B could catalyze N-methylcoclaurine and coclaurine into their respective 3'-hydroxylated products. Notably, StCYP80B exhibited an expanded substrate selectivity compared to previously reported wild-type CYP80Bs, as it did not require an N-methyl group for hydroxylase activity. Furthermore, StCYP80B displayed a clear preference for the (S)-configuration. Co-expression of StCYP80B with the CYP450 reductases (CPRs, StCPR1, and StCPR2), also cloned from S. tetrandra, significantly enhanced the catalytic activity towards (S)-coclaurine. Site-directed mutagenesis of StCYP80B revealed that the residue H205 is crucial for coclaurine catalysis. Additionally, StCYP80B exhibited tissue-specific expression in plants. This study provides new genetic resources for the biosynthesis of BIAs and further elucidates their synthetic pathway in natural plant systems.
Cytochrome P-450 Enzyme System/chemistry*
;
Benzylisoquinolines/chemistry*
;
Hydroxylation
;
Plant Proteins/chemistry*
;
Alkaloids/metabolism*
;
Stephania tetrandra/genetics*

Result Analysis
Print
Save
E-mail