1.Nucleic Acid-driven Protein Degradation: Frontiers of Lysosomal Targeted Degradation Technology
Han YIN ; Yu LI ; Yu-Chuan FAN ; Shuai GUO ; Yuan-Yu HUANG ; Yong LI ; Yu-Hua WENG
Progress in Biochemistry and Biophysics 2025;52(1):5-19
Distinct from the complementary inhibition mechanism through binding to the target with three-dimensional conformation of small molecule inhibitors, targeted protein degradation technology takes tremendous advantage of endogenous protein degradation pathway inside cells to degrade plenty of “undruggable” target proteins, which provides a novel route for the treatment of many serious diseases, mainly including proteolysis-targeting chimeras, lysosome-targeting chimeras, autophagy-targeting chimeras, antibody-based proteolysis-targeting chimeras, etc. Unlike proteolysis-targeting chimeras first found in 2001, which rely on ubiquitin-proteasome system to mainly degrade intracellular proteins of interest, lysosome-targeting chimeras identified in 2020, which was act as the fastly developing technology, utilize cellular lysosomal pathway through endocytosis mediated by lysosome-targeting receptor to degrade both extracellular and membrane proteins. As an emerging biomedical technology, nucleic acid-driven lysosome-targeting chimeras utilize nucleic acids as certain components of chimera molecule to replace with ligand to lysosome-targeting receptor or protein of interest, exhibiting broad application prospects and potential clinical value in disease treatment and drug development. This review mainly introduced present progress of nucleic acid-driven lysosome-targeting chimeras technology, including its basic composition, its advantages compared with antibody or glycopeptide-based lysosome-targeting chimeras, and focused on its chief application, in terms of the type of lysosome-targeting receptors. Most research about the development of nucleic acid-driven lysosome-targeting chimeras focused on those which utilized cation-independent mannose-6-phosphonate receptor as the lysosome-targeting receptor. Both mannose-6-phosphonate-modified glycopeptide and nucleic aptamer targeting cation-independent mannose-6-phosphonate receptor, even double-stranded DNA molecule moiety can be taken advantage as the ligand to lysosome-targeting receptor. The same as classical lysosome-targeting chimeras, asialoglycoprotein receptor can also be used for advance of nucleic acid-driven lysosome-targeting chimeras. Another new-found lysosome-targeting receptor, scavenger receptor, can bind dendritic DNA molecules to mediate cellular internalization of complex and lysosomal degradation of target protein, suggesting the successful application of scavenger receptor-mediated nucleic acid-driven lysosome-targeting chimeras. In addition, this review briefly overviewed the history of lysosome-targeting chimeras, including first-generation and second-generation lysosome-targeting chimeras through cation-independent mannose-6-phosphonate receptor-mediated and asialoglycoprotein receptor-mediated endocytosis respectively, so that a clear timeline can be presented for the advance of chimera technique. Meantime, current deficiency and challenge of lysosome-targeting chimeras was also mentioned to give some direction for deep progress of lysosome-targeting chimeras. Finally, according to faulty lysosomal degradation efficiency, more cellular mechanism where lysosome-targeting chimeras perform degradation of protein of interest need to be deeply explored. In view of current progress and direction of nucleic acid-driven lysosome-targeting chimeras, we discussed its current challenges and development direction in the future. Stability of natural nucleic acid molecule and optimized chimera construction have a great influence on the biological function of lysosome-targeting chimeras. Discovery of novel lysosome-targeting receptors and nucleic aptamer with higher affinity to the target will greatly facilitate profound advance of chimera technique. In summary, nucleic acid-driven lysosome-targeting chimeras have many superiorities, such as lower immunogenicity, expedient synthesis of chimera molecules and so on, in contrast to classical lysosome-targeting chimeras, making it more valuable. Also, the chimera technology provides new ideas and methods for biomedical research, drug development and clinical treatment, and can be used more widely through further research and optimization.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Root causes of quality changes in cultivated Chinese materia medica and countermeasures for high-quality production.
Chao-Geng LYU ; Chuan-Zhi KANG ; Ya-Li HE ; Zhi-Lai ZHAN ; Sheng WANG ; Xiu-Fu WAN ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(13):3529-3535
In order to support the implementation of the Opinions on Improving the Quality of Traditional Chinese Medicine and Promoting the High-Quality Development of the Traditional Chinese Medicine Industry and fundamentally promote the high-quality development of Chinese materia medica(CMM) industry, this article analyzed the quality and safety issues arising during the transition of CMM from wild harvesting to cultivation. Root causes of these issues were identified, including changes in the habitats of medicinal plants caused by inappropriate field cultivation patterns, excessive use of chemical inputs such as fertilizers and pesticides, and shortened cultivation periods due to rising economic costs. To address the above issues, the following countermeasures and suggestions were proposed to advance the high-quality development of CMM:(1) comprehensively adjust the cultivation patterns, vigorously promote ecological cultivation of CMM, and ensure production quality and safety of CMM from the source;(2) strengthen the breeding of high-quality, stress-resistant CMM varieties, improve cultivation techniques to reduce the use of fertilizers and pesticides, and improve the quality and efficiency of ecological cultivation of CMM;(3) systematically design the production, operation, and supervision models for ecological cultivation of CMM, carry out demonstrations of "high quality with fair price", and ensure the sustainable development of ecological cultivation of CMM.
Drugs, Chinese Herbal/standards*
;
Quality Control
;
Plants, Medicinal/chemistry*
;
Plant Roots/chemistry*
;
China
;
Fertilizers/analysis*
;
Materia Medica/standards*
;
Medicine, Chinese Traditional/standards*
4.Genetic profiling and intervention strategies for phenylketonuria in Gansu, China: an analysis of 1 159 cases.
Chuan ZHANG ; Pei ZHANG ; Bing-Bo ZHOU ; Xing WANG ; Lei ZHENG ; Xiu-Jing LI ; Jin-Xian GUO ; Pi-Liang CHEN ; Ling HUI ; Zhen-Qiang DA ; You-Sheng YAN
Chinese Journal of Contemporary Pediatrics 2025;27(7):808-814
OBJECTIVES:
To investigate the molecular epidemiology of children with phenylketonuria (PKU) in Gansu, China, providing foundational data for intervention strategies.
METHODS:
A retrospective analysis was conducted on 1 159 PKU families who attended Gansu Provincial Maternity and Child Care Hospital from January 2012 to December 2024. Sanger sequencing, multiplex ligation-dependent probe amplification, whole exome sequencing, and deep intronic variant analysis were used to analyze the PAH gene.
RESULTS:
For the 1 159 children with PKU, 2 295 variants were identified in 2 318 alleles, resulting in a detection rate of 99.01%. The detection rates were 100% (914/914) in 457 classic PKU families, 99.45% (907/912) in 456 mild PKU families, and 96.34% (474/492) in 246 mild hyperphenylalaninemia families. The 2 295 variants detected comprised 208 distinct mutation types, among which c.728G>A (14.95%, 343/2 295) had the highest frequency, followed by c.611A>G (4.88%, 112/2 295) and c.721C>T (4.79%, 110/2 295). The cumulative frequency of the top 23 hotspot variants reached 70.28% (1 613/2 295), and most variant alleles were detected in exon 7 (29.19%, 670/2 295).
CONCLUSIONS
Deep intronic variant analysis of the PAH gene can improve the genetic diagnostic rate of PKU. The development of targeted detection kits for PAH hotspot variants may enable precision screening programs and enhance preventive strategies for PKU.
Humans
;
Phenylketonurias/epidemiology*
;
Female
;
Male
;
Retrospective Studies
;
Phenylalanine Hydroxylase/genetics*
;
Mutation
;
Child, Preschool
;
China/epidemiology*
;
Child
;
Infant
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
7.Era value and new directions of traditional Chinese medicine in preventing and treating osteoporosis from perspective of "bone health program".
Yi-Li ZHANG ; Chuan-Rui SUN ; Kai SUN ; Ai-Li XU ; Hao SHEN ; He YIN ; Ling-Hui LI ; Li-Guo ZHU ; Xu WEI
China Journal of Chinese Materia Medica 2025;50(3):569-574
Facing the requirements of promoting the healthy China initiative and improving people's health, the "bone health program" was proposed in 2024. In-depth development of a traditional Chinese medicine(TCM) prevention and control system is of strategic significance to the implementation of the "bone health program". Focusing on osteoporosis(OP), a representative disease affecting people's bone health, this paper concludes that accelerating the research on the prevention and control of OP by TCM is conducive to enhancing the knowledge and awareness of OP among the public, and it is beneficial to revealing the evolutionary pattern of OP and improving the understanding and management of this disease. Additionally, it can provide an overall framework for and strengthen the systematicity and completeness of the research on the prevention and treatment of OP by TCM. Meanwhile, it can help to explore new research paradigms and optimize the existing research model, so as to promote innovative breakthroughs in the prevention and treatment of bone health-related diseases by TCM. Under the overall layout of the "bone health program", importance should be attached to the early prevention and the innovation of very early diagnosis and intervention of OP. Emphasis should be put on the discovery of the target network of disease and treatment mechanism for revealing the core pathogenesis of OP and the therapeutic mechanism of TCM. In addition to local lesions of the bone and its clinical outcomes, attention should be paid to the development of multiple metabolic complications. The fusion of advanced interdisciplinary technologies should be promoted for OP and its complications, and thus a research and development system based on clinical application scenarios and driven by big data can be built. The measures above will facilitate the progress in the prevention and treatment of OP and other bone diseases by TCM and provide new momentum for enriching and deepening the research connotation of the "bone health program".
Osteoporosis/therapy*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/therapeutic use*
;
China
;
Bone and Bones/drug effects*
8.Influence of iron metabolism on osteoporosis and modulating effect of traditional Chinese medicine.
Yi-Li ZHANG ; Bao-Yu QI ; Chuan-Rui SUN ; Xiang-Yun GUO ; Shuang-Jie YANG ; Ping LIU ; Xu WEI
China Journal of Chinese Materia Medica 2025;50(3):575-582
Recent studies have shown that an imbalance in iron metabolism can affect the composition and microstructural changes of bone, disrupting bone homeostasis and leading to osteoporosis(OP). The imbalance in iron metabolism, along with its induced local abnormal microenvironment and cellular iron death, has become a new focal point in OP research, drawing increasing attention from the academic community regarding the regulation of iron metabolism to prevent and manage OP. From the perspective of traditional Chinese medicine(TCM), iron metabolism imbalance has potential connections to TCM theories regarding internal organs, as well as treatments aimed at tonifying the kidney, strengthening the spleen, and activating blood circulation. Evidence is continually emerging that TCMs and effective components that tonify the kidney, strengthen the spleen, and activate blood circulation can prevent and manage OP by regulating iron metabolism. This article analyzes the relationship between iron and bone, as well as the effects of TCM formulations on improving iron metabolism and influencing bone metabolism, from the perspectives of iron metabolism mechanisms and TCM interventions, aiming to broaden existing clinical strategies for prevention and treatment and inject new momentum into the field of OP as it moves into a new era.
Osteoporosis/drug therapy*
;
Humans
;
Iron/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Medicine, Chinese Traditional
;
Bone and Bones/drug effects*
9.RNA SNP Detection Method With Improved Specificity Based on Dual-competitive-padlock-probe
Qin-Qin ZHANG ; Jin-Ze LI ; Wei ZHANG ; Chuan-Yu LI ; Zhi-Qi ZHANG ; Jia YAO ; Hong DU ; Lian-Qun ZHOU ; Zhen GUO
Progress in Biochemistry and Biophysics 2024;51(11):3021-3033
ObjectiveThe detection of RNA single nucleotide polymorphism (SNP) is of great importance due to their association with protein expression related to various diseases and drug responses. At present, splintR ligase-assisted methods are important approaches for RNA direct detection, but its specificity will be limited when the fidelity of ligases is not ideal. The aim of this study was to create a method to improve the specificity of splintR ligase for RNA detection. MethodsIn this study, a dual-competitive-padlock-probe (DCPLP) assay without the need for additional enzymes or reactions is proposed to improve specificity of splintR ligase ligation. To verify the method, we employed dual competitive padlock probe-mediated rolling circle amplification (DCPLP-RCA) to genotype the CYP2C9 gene. ResultsThe specificity was well improved through the competition and strand displacement of dual padlock probe, with an 83.26% reduction in nonspecific signal. By detecting synthetic RNA samples, the method demonstrated a dynamic detection range of 10 pmol/L-1 nmol/L. Furthermore, clinical samples were applied to the method to evaluate its performance, and the genotyping results were consistent with those obtained using the qPCR method. ConclusionThis study has successfully established a highly specific direct RNA SNP detection method, and provided a novel avenue for accurate identification of various types of RNAs.
10.Promoting Reform of Talent Evaluation Based on China Clinical Cases Library of Traditional Chinese Medicine
Kaige ZHANG ; Yong ZHU ; Jisheng WANG ; Liangzhen YOU ; Weijun HUANG ; Jie YANG ; Candong LI ; Genping LEI ; Chuan ZHENG ; Shuzhen GUO ; Longtao LIU ; Zhining TIAN ; Xinping QIU ; Wenli SU ; Zuo LI ; Wei YAN ; Hongcai SHANG ; Xiaoxiao ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(17):220-226
Talents are the main force for the development of traditional Chinese medicine(TCM), and the construction of TCM talents and the reformation of talent evaluation system are essential to promote the inheritance and innovation of TCM. At present, we are still exploring and developing in the fields of the formulation, implementation and evaluation indicators of TCM talent evaluation system. However, there are shortcomings and difficulties. For instance, insufficient stratification in the evaluation, excessive emphasis on the quantity of achievements, neglecting the quality of the achievements and the actual contribution, imperfect assessment indicators, and the weak characteristics of TCM. Therefore, national ministries and commissions have jointly issued a document requesting to break the four only and set a new standard, in order to promote the construction of a scientific and technological talent evaluation system oriented by innovation value, ability and contribution. For the evaluation of TCM clinical talents, China Association for Science and Technology commissioned China Association of Chinese Medicine to build the China Clinical Cases Library of TCM(CCCL-TCM), which aims at collecting the most authoritative and representative TCM clinical cases and exploring the advantages of applying clinical cases as masterpiece of achievement in TCM clinical talents evaluation. CCCL-TCM can promote the construction of a talent evaluation system that is more in line with the development characteristics of TCM industry, and to carry out relevant pilot in TCM colleges and institutions across the country in order to promote the reformation of TCM talent evaluation system.

Result Analysis
Print
Save
E-mail