1.Factors affecting Pomacea distribution and prediction of suitable distribution areas of Pomacea in Dali Bai Autonomous Prefecture of Yunnan Province
Zhongqiu LI ; Yuhua LIU ; Yunhai GUO ; Zixin WEI ; Junhu CHEN ; Qiang WANG ; Tianmei LI ; Shizhu LI
Chinese Journal of Schistosomiasis Control 2025;37(1):69-75
Objective To investigate the factors affecting the distribution of Pomacea and project the trends in the spread of suitable distribution areas of Pomacea in 2050 and 2070 in Dali Bai Autonomous Prefecture, so as to provide insights into Pomacea control in the prefecture. Methods The longitudes and latitudes of Pomacea sampling sites were captured based on Pomacea field survey data in 12 cities (counties) of Dali Bai Autonomous Prefecture from 2023 to 2024. A total of 19 climatic factors (annual mean temperature, mean diurnal range, isothermality, temperature seasonality, maximum temperature of the warmest month, minimum temperature of the coldest month, temperature annual range, mean temperature of the wettest quarter, mean temperature of the driest quarter, mean temperature of the warmest month, mean temperature of the coldest month, annual precipitation, precipitation of the wettest month, precipitation of the driest month, precipitation seasonality, precipitation of the wettest quarter, precipitation of the driest quarter, mean temperature of the warmest quarter, and mean temperature of the coldest quarter) and representative concentration pathways (RCPs) were retrieved from the world climate database (www.worldclim.org). All climatic variables were employed to create a maximum entropy (MaxEnt) model. The predictive accuracy of the model was assessed with the area under the receiver operating characteristic (ROC) curve (AUC), and the contributions of these 19 climatic factors to the distribution of Pomacea were analyzed in Dali Bai Autonomous Prefecture using Jackknife test. In addition, the suitable distribution areas of Pomacea were predicted with the MaxEnt model in Dali Bai Autonomous Prefecture in 2024 and in 2050 and 2070 under RCP4.5. Results Data pertaining to 91 Pomacea sampling sites were captured. ROC analysis revealed the MaxEnt model had an AUC value of 0.885 ± 0.088 for predicting the suitable distribution areas of Pomacea in Dali Bai Autonomous Prefecture. Of the 19 climatic factors, the maximum temperature of the warmest month had the highest contribution to the distribution of Pomacea in Dali Bai Autonomous Prefecture, followed by mean temperature of the driest quarter, mean temperature of the wettest quarter and minimum temperature of the coldest month. The suitable distribution area of Pomacea was predicted to be 14 555.69 km2 in Dali Bai Autonomous Prefecture in 2024, and would expand gradually to the southeastern part of the prefecture in the future due to climatic factors. The suitable distribution areas of Pomacea were projected to expand to 21 475.61 km2 in 2050 and 25 782.52 km2 in 2070 in Dali Bai Autonomous Prefecture, respectively. Conclusions Temperature is an important contributor to the distribution of Pomacea in Dali Bai Autonomous Prefecture, and the suitable distribution area of Pomacea will gradually expand to the southeastern part of the prefecture in 2050 and 2070.
2.Population genetic structure of sandflies in China based on mitochondrial DNA
Zhongqiu LI ; Zixin WEI ; Zhengbin ZHOU ; Yi ZHANG
Chinese Journal of Schistosomiasis Control 2025;37(2):144-151
Objective To investigate the genetic diversity of sandfly populations in endemic areas of visceral leishmaniasis in China, so as to provide references insights into management of visceral leishmaniasis and the vector sandflies. MethodsSixteen sampling sites were selected from main endemic foci of visceral leishmaniasis in China from June to September 2024, including Shanxi Province, Shaanxi Province, Henan Province, Gansu Province, Sichuan Province, and Xinjiang Uygur Autonomous Region. Sandflies were captured using light traps and manual aspirators from sheep pens, chicken coops, cave dwellings, bovinesheds, and pig pens at each sampling site. A single sandfly sample was washed in phosphate-buffered saline (PBS), and genomic DNA was extracted from sandfly samples. Cytochrome oxidase subunit 1 (COI) gene was amplified using PCR assay with universal primers, and analyzed and retrieved with the nucleotide sequence analysis tool (BLAST) software, and the sequence of COI gene was aligned with the ClustalX 1.83 and MEGA 7.0 software. The base composition and variation site of the COI gene sequence were analyzed using the software MEGA 7.0, and the number of haplotypes, total number of segregating sites, haplotype diversity, nucleotide diversity, and average nucleotide differences were calculated in the COI gene sequence using the software DnaSP 5.10, followed by Tajima’s D test for neutrality. Haplotypes were screened using the software DnaSP 5.10, and the haplotype network map of sandfly samples was plotted using the software Network 5.0. MEGA 7.0 software was employed for gene sequence editing and alignment, and calculation of genetic distances among sandfly species sampled from different regions, and a phylogenetic tree was built with a neighbor-joining method. Results A total of 466 sandflies were captured from 16 sampling sites in China from June to September 2024, and 430 gene sequences were yielded following PCR amplification and sequencing of the COI gene, with 652 to 688 bp in the length of amplification fragments. The captured sandfly samples were characterized as Phlebotomus chinensis, Sergentomyia squamirostris, Se. koloshanensis, Ph. sichuanensis, and Ph. longiductus following the COI gene sequence alignment in BLAST. A total of 251 haplotypes were identified in the 430 gene sequences from sandfly samples (50.5%), and the average haplotype diversity, nucleotide diversity and average number of nucleotide difference were 0.885, 0.257 and 160.761, respectively. The Tajima’s D values were -0.92 for sandfly populations from Yangquan City, Shanxi Province and -1.73 for sandfly populations from Sanmenxia City, Henan Province, and were all more than 0 for sandfly populations from other sampling sites. Haplotype analysis identified 50 haplotypes, which were classified into two haplogroups. Heplogroup 1 included 29 haplotypes, which had a high homology, and heplogroup 2 included 21 haplotypes. The average genetic distance was 0.000 to 0.604 among sandfly samples from different sampling sites, and phylogenetic analysis revealed that the five sandfly species were clustered into distinct clades, all with 100% clade confidence. Conclusions There is a high genetic polymorphism in the COI gene from five sandfly populations in main endemic foci of visceral leishmaniasis in China, and COI gene may serve as a marker gene for analysis of the genetic structure of sandfly populations.
3.Artificial intelligence in traditional Chinese medicine: from systems biological mechanism discovery, real-world clinical evidence inference to personalized clinical decision support.
Dengying YAN ; Qiguang ZHENG ; Kai CHANG ; Rui HUA ; Yiming LIU ; Jingyan XUE ; Zixin SHU ; Yunhui HU ; Pengcheng YANG ; Yu WEI ; Jidong LANG ; Haibin YU ; Xiaodong LI ; Runshun ZHANG ; Wenjia WANG ; Baoyan LIU ; Xuezhong ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1310-1328
Traditional Chinese medicine (TCM) represents a paradigmatic approach to personalized medicine, developed through the systematic accumulation and refinement of clinical empirical data over more than 2000 years, and now encompasses large-scale electronic medical records (EMR) and experimental molecular data. Artificial intelligence (AI) has demonstrated its utility in medicine through the development of various expert systems (e.g., MYCIN) since the 1970s. With the emergence of deep learning and large language models (LLMs), AI's potential in medicine shows considerable promise. Consequently, the integration of AI and TCM from both clinical and scientific perspectives presents a fundamental and promising research direction. This survey provides an insightful overview of TCM AI research, summarizing related research tasks from three perspectives: systems-level biological mechanism elucidation, real-world clinical evidence inference, and personalized clinical decision support. The review highlights representative AI methodologies alongside their applications in both TCM scientific inquiry and clinical practice. To critically assess the current state of the field, this work identifies major challenges and opportunities that constrain the development of robust research capabilities-particularly in the mechanistic understanding of TCM syndromes and herbal formulations, novel drug discovery, and the delivery of high-quality, patient-centered clinical care. The findings underscore that future advancements in AI-driven TCM research will rely on the development of high-quality, large-scale data repositories; the construction of comprehensive and domain-specific knowledge graphs (KGs); deeper insights into the biological mechanisms underpinning clinical efficacy; rigorous causal inference frameworks; and intelligent, personalized decision support systems.
Medicine, Chinese Traditional/methods*
;
Artificial Intelligence
;
Humans
;
Precision Medicine
;
Decision Support Systems, Clinical
4.Evaluation and analysis of efficacy in bisphosphonate treatment of chronic nonbacterial osteomyelitis.
Dandan LI ; Zhujun YU ; Cheng NIE ; Zixin ZOU ; Jianli WANG
West China Journal of Stomatology 2025;43(1):98-105
OBJECTIVES:
This study aimed to analyze the influence of drug factors on the efficacy of bisphosphonate for chronic nonbacterial osteomyelitis to provide a reference for clinical treatment and promote clinical rational drug use by evaluation of effectiveness and safety of bisphosphonate treatment of chronic nonbacterial osteomyelitis.
METHODS:
Literature on the treatment of chronic nonbacterial osteomyelitis by using bisphosphonate was collected and analyzed from PubMed, Medline, Embase, Cochrane, ISI Web of Knowledge, CNKI, VIP, and Wanfang databases.
RESULTS:
A total of 489 cases were collected, with an average complete response rate of clinical presentation, laboratory tests and imaging findings of 80.37%, 80.56% and 79.22%, respectively. Except for opadronate, risedronate, ibandronate, pamidronate, alendronate, neidronate and zoledronate showed good efficacy, and the average complete response rates were 100%, 100%, 81.64%, 87.50%, 69.23% and 69.23%, respectively.The study found that in the pamidronate group, the average complete response rate of 0.5-1 mg/kg (maximum single dose≤60 mg) subgroup and the frequency of administration once every 3 months subgroup were better than other subgroups.
CONCLUSIONS
Bisphosphonate could be used to treat chronic nonbacterial osteomyelitis, which of efficacy were affected by different drug types, dose and frequency of administration. The optimal dose and frequency of administration of pamidronate were 0.5-1 mg/kg (maximum single dose≤60 mg) and once every 3 months, respectively.
Osteomyelitis/drug therapy*
;
Humans
;
Diphosphonates/administration & dosage*
;
Chronic Disease
;
Bone Density Conservation Agents/administration & dosage*
;
Female
;
Pamidronate
;
Middle Aged
;
Male
5.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
6.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
7.Role and mechanism of CC chemokines and their receptors in chronic liver diseases
Zixin ZHANG ; Hui LI ; Jiahui WANG ; Yujing TAO ; Xiaoyan ZENG
Journal of Clinical Hepatology 2024;40(5):1044-1049
In recent years,the incidence rate of chronic liver diseases continues to rise,such as chronic hepatitis B,nonalcoholic fatty liver disease,liver fibrosis,liver cirrhosis,and hepatocellular carcinoma,and the age of onset gradually becomes younger.At present,the role of many CC chemokines in chronic liver diseases has been confirmed.This article summarizes the research advances in CC chemokines and their receptors that affect chronic liver diseases in recent years and explore their potential application in chronic liver diseases,so as to provide new ideas for the prevention and treatment of chronic liver diseases.
8.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
9.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
10.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.

Result Analysis
Print
Save
E-mail