1.A study on the preparation of a BGN-loaded thermosensitive adhesive and its performance in barrier membrane fixation
WANG Yuzhu ; GU Junting ; LI Zhiting ; BAI Que ; DANG Gaopeng ; WANG Yifei ; SUN Xiaotang ; NIU Lina ; FANG Ming
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(1):41-53
Objective:
To investigate the barrier membrane fixation performance and enhanced guided bone regeneration (GBR) capability of a thermosensitive adhesive containing bioactive glass nanoparticles in order to provide a novel solution for membrane fixation during GBR procedures.
Methods:
M2NP@BGN (methoxyethyl acrylate-co-N-isopropylacrylamide-co-protocatechuic acid@Bioactive glass nanoparticle), a thermosensitive adhesive, was synthesized via free radical polymerization by compositing methoxyethyl acrylate, N-isopropylacrylamide, and protocatechuic acid into a basic adhesive that was modified with bioactive glass nanoparticle (BGN). The successful fabrication of basic adhesive M2NP was characterized by attenuated total reflection-Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The thermosensitive adhesive M2NP@BGN (BGN concentration of 1 mg/mL) was characterized by scanning electron microscopy and a rheometer. By adjusting the BGN concentration (0.1 mg/mL, 0.5 mg/mL, 1 mg/mL, and 2 mg/mL), the adhesive and mechanical strengths were investigated with a universal testing machine. Biocompatibility was evaluated with a cell counting kit-8 assay and hemolysis test to identify the optimal formulation. The optimal material’s extract was co-cultured with mouse bone marrow mesenchymal stem cells, and its osteogenic activity was examined in vitro by quantitative real-time PCR, alkaline phosphatase, and alizarin red S staining. The rat mandibular defect model was established, filled with bone graft, and divided into 3 groups based on membrane fixation method: M2NP@BGN (BGN concentration of 1 mg/mL) fixation group (M2NP@BGN), titanium nail fixation group (Nail), and unfixed control group (Negative). Bone regeneration was analyzed after 8 weeks by micro computed tomography and histological staining.
Results:
M2NP@BGN (BGN concentration of 1 mg/mL) was successfully synthesized and demonstrated rapid gelation under warm, humid conditions. The adhesive with a BGN concentration of 1 mg/mL exhibited the highest adhesive strength (P < 0.001) and significantly enhanced mechanical strength (P < 0.001) under 37℃ wet conditions. All formulations showed excellent biocompatibility, with cell viability > 80% and hemolysis ratio < 5%. M2NP@BGN (BGN concentration of 1 mg/mL) significantly upregulated the expression of Runx2 and Col I (P < 0.001) and enhanced the activity of osteogenic differentiation markers (P < 0.05). In the animal model, the M2NP@BGN group (BGN concentration of 1 mg/mL) achieved significantly higher bone volume fraction and better bone maturity compared to the negative and nail groups (P < 0.05).
Conclusion
M2NP@BGN (BGN concentration of 1 mg/mL) combines excellent wet adhesion with potent osteogenic activity, enhances the bone augmentation efficacy of membranes, and presents a novel fixation strategy with significant clinical translation potential for GBR therapy.
2.Effect of Wenshen Tongluo Zhitong formula on mouse H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell co-culture system
Shijie ZHOU ; Muzhe LI ; Li YUN ; Tianchi ZHANG ; Yuanyuan NIU ; Yihua ZHU ; Qinfeng ZHOU ; Yang GUO ; Yong MA ; Lining WANG
Chinese Journal of Tissue Engineering Research 2025;29(1):8-15
BACKGROUND:Bone relies on the close connection between blood vessels and bone cells to maintain its integrity.Bones are in a physiologically hypoxic environment.Therefore,the study of angiogenesis and osteogenesis in hypoxic environment is closer to the microenvironment in vivo. OBJECTIVE:To explore the influence of Wenshen Tongluo Zhitong(WSTLZT)formula on H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell co-culture system in hypoxia environment and its related mechanism. METHODS:Enzyme digestion method and flow sorting technique were used to isolate and identify H-type bone microvascular endothelial cells.Mouse bone marrow mesenchymal stem cells were isolated and obtained by bone marrow adhesion method.H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell hypoxic co-culture system was established using Transwell chamber and anoxic culture workstation.WSTLZT formula powder was used to intervene in each group at a mass concentration of 50 and 100 μg/mL.The angiogenic function of H-type bone microvascular endothelial cells in the co-culture system was evaluated by scratch migration test and tube formation test.The osteogenic differentiation ability of bone marrow mesenchymal stem cells in the co-cultured system was evaluated by alkaline phosphatase staining and alizarin red staining.The protein and mRNA expression changes of PDGF/PI3K/AKT signal axis related molecules in H-type bone microvascular endothelial cells in the co-cultured system were detected by Western Blotting and q-PCR,respectively. RESULTS AND CONCLUSION:(1)Compared with the normal oxygen group,the scratch mobility and new blood vessel length of H-type bone microvascular endothelial cells were significantly higher(P<0.05);the osteogenic differentiation capacity of bone marrow mesenchymal stem cells was higher(P<0.05);the expression of PDGF/PI3K/AKT axis-related molecular protein and mRNA increased(P<0.05)in the hypoxia group.(2)Compared with the hypoxia group,scratch mobility and new blood vessel length were significantly increased in the H-type bone microvascular endothelial cells(P<0.05);bone marrow mesenchymal stem cells had stronger osteogenic function(P<0.05);the expression of PDGF/PI3K/AKT axis-related molecular proteins and mRNA further increased(P<0.05)after treatment with different dose concentrations of WSTLZT formula.These findings conclude that H-type angiogenesis and osteogenesis under hypoxia may be related to the PDGF/PI3K/AKT signaling axis,and WSTLZT formula may promote H-type vasculo-dependent bone formation by activating the PDGF/PI3K/AKT signaling axis,thereby preventing and treating osteoporosis.
3.Meta-analysis of anterior cervical decompression and fusion ROI-CTM self-locking system in treatment of degenerative cervical spondylosis
Yanjie ZHOU ; Chunfeng CAO ; Zhongzu ZHANG ; Xiong NIU ; Xin WANG ; Zaihai YANG ; Liang ZHOU ; Bo LI
Chinese Journal of Tissue Engineering Research 2025;29(3):617-627
OBJECTIVE:Anterior cervical decompression and fusion is a classic surgical method for the treatment of degenerative cervical spondylosis.The use of nail plates increases the fusion rate and stability and indirectly leads to adjacent vertebral degeneration and postoperative dysphagia.In this paper,the clinical results and complications of ROI-CTM self-locking system and traditional cage combined with screw-plate internal fixation in the treatment of degenerative cervical spondylosis were compared by meta-analysis to provide evidence-based support for the selection of internal fixation methods in anterior cervical decompression and fusion. METHODS:CNKI,WanFang,VIP,PubMed,Cochrane Library,Web of Science,and Embase databases were searched for Chinese and English literature on the application of ROI-CTM self-locking system and fusion cage combined with screw plate internal fixation in the treatment of degenerative cervical spondylosis.The retrieval time range was from inception to July 2023.Two researchers selected the literature strictly according to the inclusion and exclusion criteria.The Cochrane bias risk tool was used to evaluate the quality of randomized controlled trials.Newcastle-Ottawa Scale was used to assess the quality of cohort studies.Meta-analysis was performed using RevMan 5.4 software.Outcome indicators included operation time,intraoperative blood loss,Japanese Orthopaedic Association score,Neck Disability Index,C2-C7 Cobb angle,fusion rate,incidence of adjacent vertebral degeneration,cage subsidence rate,and incidence of dysphagia. RESULTS:Thirteen articles were included,including eleven retrospective cohort studies and two randomized controlled trials,with 1 136 patients,569 in the ROI-C group,and 567 in the cage combined with the nail plate group.Meta-analysis results showed that the operation time(MD=-15.52,95%CI:-18.62 to-12.42,P<0.000 01)and intraoperative blood loss(MD=-24.53,95%CI:-32.46 to-16.61,P<0.000 01)in the ROI-C group and the fusion device combined with nail plate group.Postoperative adjacent segment degeneration rate(RR=0.40,95%CI:0.27-0.60,P<0.000 01)and postoperative total dysphagia rate(RR=0.18,95%CI:0.13-0.26),P<0.000 01)were statistically different.The two groups had no significant difference in Japanese Orthopaedic Association score,Neck Disability Index,C2-C7 Cobb angle,fusion rate,or cage subsidence rate(P≥0.05). CONCLUSION:Applying an ROI-CTM self-locking system and traditional cage combined with plate internal fixation in anterior cervical decompression and fusion can achieve satisfactory clinical results in treating degenerative cervical spondylosis.The operation of the ROI-CTM self-locking system is more straightforward.Compared with a cage combined with plate internal fixation,the ROI-CTM self-locking system can significantly reduce the operation time and intraoperative blood loss and has obvious advantages in reducing the incidence of postoperative dysphagia and adjacent segment degeneration.The ROI-CTM self-locking system is recommended for patients with skip cervical spondylosis and adjacent vertebral disease.However,given its possible high settlement rate,using a fusion cage combined with screw-plate internal fixation is still recommended for patients with degenerative cervical spondylosis with multiple segments and high-risk factors of fusion cage settlement,such as osteoporosis and vertebral endplate damage.
4.Mechanism by which exogenous basic fibroblast growth factor promotes wound healing in rats
Zhenchao LI ; Xiling DU ; Zhixin HAN ; Dawei NIU ; Changwei FAN
Chinese Journal of Tissue Engineering Research 2025;29(11):2243-2251
BACKGROUND:This study provided insight into the molecular mechanisms by which exogenous basic fibroblast growth factor(bFGF)promotes wound healing. OBJECTIVE:To investigate the effect of exogenous bFGF on macrophage phenotype transition and granulation regeneration during wound repair in rats. METHODS:(1)In vitro experiment:Cells were divided into normal control group,low-dose bFGF group,high-dose bFGF group,and bFGF+valproic acid group.100 and 200 μg/L bFGF was added into the cell culture medium of low-dose bFGF group and high-dose bFGF group,respectively,while 200 μg/L bFGF and 20 mmol/L valproic acid were added into the cell culture medium of valproic acid group.EdU test,scratch test and tubule formation test were used to detect the effects of bFGF on proliferation,migration and angiogenesis of human umbilical vein endothelial cells.(2)In vivo experiment:Sprague-Dawley rats were randomly divided into model group,low-dose bFGF group,high-dose bFGF group and bFGF+valproic acid group.The open wound model of full-thickness skin defect was established in low-dose bFGF group,high-dose bFGF group and bFGF+valproic acid group.Rats in the low-and high-dose bFGF groups were given 100 and 200 μg/L bFGF through subcutaneous injection,while those in the bFGF+valproic acid group received subcutaneous injection of 200 μg/L bFGF and intraperitoneal injection of 10 mg/kg valproic acid.The wound healing rate of rats was detected at 7 and 14 days of administration.TUNEL was used to detect the apoptosis of cells in wound tissue.Enzyme linked immunosorbent assay was used to detect the serum levels of malondialdehyde,superoxide dismutase,tumor necrosis factor-α and interleukin-10.Immunofluorescence detection was conducted to detect the phenotypic transformation of macrophages in wound tissue.Immunohistochemistry was used to detect the expression of proliferating cell nuclear antigen,platelet endothelial cell adhesion molecule-1(CD31)and vascular endothelial growth factor in wound tissue.Western blot was used to detect the expression of Notch1 and Jagged1 in wound tissue. RESULTS AND CONCLUSION:(1)Compared with the normal control group,bFGF could significantly promote the proliferation,migration and angiogenesis of human umbilical vein endothelial cells in a dose-dependent manner.(2)Compared with the model group,bFGF could significantly promote wound healing,downregulate the rate of apoptosis in wound tissue,decrease the levels of malondialdehyde and tumor necrosis factor-α in serum,increase the levels of superoxide dismutase and interleukin-10,promote the conversion of macrophages to type M2 in wound tissue,upregulate the expression of proliferating cell nuclear antigen,CD31 and vascular endothelial growth factor in wound tissue,and inhibit the expression of Notch1 and Jagged1 in a dose-dependent manner.Valproic acid could partially reverse the promoting effect of bFGF on wound healing.To conclude,bFGF can significantly promote wound healing and granulation regeneration and induce the conversion of macrophages to M2,which may be related to the regulation of Notch1/Jagged1 signaling pathway.
5.Study on Compatibility and Efficacy of Blood-activating Herb Pairs Based on Graph Convolution Network
Jingai WANG ; Qikai NIU ; Wenjing ZONG ; Ziling ZENG ; Siwei TIAN ; Siqi ZHANG ; Yuwen ZHAO ; Huamin ZHANG ; Bingjie HUO ; Bing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):228-234
ObjectiveThis study aims to develop a prediction model for the compatibility of Chinese medicinal pairs based on Graph Convolutional Networks (GCN), named HC-GCN. The model integrates the properties of herbs with modern pharmacological mechanisms to predict pairs with specific therapeutic effects. It serves as a demonstration by applying the model to predict and validate the efficacy of blood-activating herb pairs. MethodsThe training dataset for herb pair prediction was constructed by systematically collecting commonly used herb pairs along with their characteristic data, including Qi, flavor, meridian tropism, and target genes. Integrating traditional characteristics of herb with modern bioinformatics, we developed an efficacy-oriented herb pair compatibility prediction model (HC-GCN) using graph convolutional networks (GCN). This model leverages machine learning to capture the complex relationships in herb pair compatibility, weighted by efficacy features. The performance of the HC-GCN model was evaluated using accuracy (ACC), recall, precision, F1 score (F1), and area under the ROC curve (AUC). Its predictive effectiveness was then compared to five other machine learning models: eXtreme Gradient Boosting (XGBoost), logistic regression (LR), Naive Bayes, K-nearest neighbor (KNN), and support vector machine (SVM). ResultsUsing herb pairs with blood-activating effects as a demonstration, a prediction model was constructed based on a foundational dataset of 46 blood-activating herb pairs, incorporating their Qi, flavor, meridian tropism, and target gene characteristics. The HC-GCN model outperforms other commonly used machine learning models in key performance metrics, including ACC, recall, precision, F1 score, and AUC. Through the predictive analysis of the HC-GCN model, 60 herb pairs with blood-activating effects were successfully identified. Among of these potential herb pairs, 44 include at least one herb with blood-activating effects. ConclusionIn this study, we established an efficacy-oriented compatibility prediction model for herb pairs based on GCN by integrating the unique characteristics of traditional herbs with modern pharmacological mechanisms. This model demonstrated high predictive performance, offering a novel approach for the intelligent screening and optimization of traditional Chinese medicine prescriptions, as well as their clinical applications.
6.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
7.Analysis of Dynamic Change Patterns of Color and Composition During Fermentation of Myristicae Semen Koji
Zhenxing WANG ; Mengmeng FAN ; Le NIU ; Suqin CAO ; Hongwei LI ; Zhenling ZHANG ; Hanwei LI ; Jianguang ZHU ; Kai LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):222-229
ObjectiveTo explore the changes in volatile components, total polysaccharides, enzyme activity, and chromaticity value of Myristicae Semen Koji(MSK) during the fermentation process, and conduct correlation analysis. MethodsBased on gas chromatography-mass spectrometry(GC-MS), the changes of volatile components in MSK at different fermentation times were identified. The phenol sulfuric acid method, dinitrosalicylic acid method(DNS), and carboxymethyl cellulose sodium salt method(CMC-Na) were used to investigate the total polysaccharide content, amylase activity, and cellulase activity during the fermentation process. Visual analysis technology was used to explore the changes in chromaticity values, revealing the fermentation process of MSK and the dynamic changes of various measurement indicators, partial least squares-discriminant analysis(PLS-DA) was used to explore the differential compounds of MSK at different fermentation degrees, and Pearson correlation analysis was used to explore the correlation between volatile components of MSK and total polysaccharides, enzyme activity, and chromaticity values. ResultsA total of 60 volatile compounds were identified from MSK, the relative contents of components such as (+)-α-pinene, β-phellandrene, β-pinene, (+)-limonene, and p-cymene obviously increased, while the relative contents of components such as safrole, methyl isoeugenol, methyleugenol, myristicin, and elemicin significantly decreased. During the fermentation process, the total polysaccharide content showed an upward trend, while the activities of amylase and cellulase showed an initial increase followed by a decrease, and reached their maximum value at 40 h. the overall brightness(L*) and total color difference(ΔE*) gradually increased, while the changes in red-green value(a*) and yellow-blue value(b*) were not obvious. PLS-DA results showed that MSK could be clearly distinguished at different fermentation times, and 13 differential biomarkers were screened out. Pearson correlation analysis results showed that the contents of α-terpinene, β-phellandrene, methyleugenol, β-cubebene and myristic acid had an obvious correlation with chromaticity values. ConclusionAfter fermentation, the volatile components, total polysaccharides, amylase activity, and cellulase activity of MSK undergo significant changes, and there is a clear correlation between them and chromaticity values, which reveals the dynamic changes in the fermentation process and related indicators of MSK, laying a foundation for the quality control.
8.Impact of Maxing Kugan Decoction on Inflammatory Response and Apoptosis in Oleic Acid-induced Acute Lung Injury in Rats via p38 MAPK/NF-κB Signaling Pathway
Taiqiang JIAO ; Yi NAN ; Ling YUAN ; Jiaqing LI ; Yang NIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):108-116
ObjectiveTo investigate the effects of Maxing Kugan decoction (MKD) on inflammatory response and apoptosis in rats with oleic acid (OA)-induced acute lung injury (ALI) and explore its mechanism of action. MethodsSixty Sprague-Dawley (SD) rats were randomly assigned into six groups: a control group, a model group, a dexamethasone-treated group (2 mg·kg-1), and three MKD-treated groups at low, medium, and high doses (3.1, 6.2,12.4 g·kg-1). Each group was administered either an equivalent volume of normal saline or the corresponding concentration of MKD by gavage for seven consecutive days. The model group and each administration group were used to establish the ALI model by tail vein injection of OA (0.2 mL·kg-1). Twelve hours after modeling, blood gas analyses were conducted, and the wet-to-dry (W/D) weight ratio of lung tissue was measured for each group. Additionally, enzyme-linked immunosorbent assay (ELISA) was employed to quantify the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF) of the rats. Cell damage and apoptosis in lung tissue were examined via hematoxylin-eosin (HE) staining and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assays, and the results were subsequently scored. The expression levels of the p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor kappa-B (NF-κB) signaling pathway and apoptosis-related proteins and mRNAs were assessed using Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the control group, the model group exhibited a significant decrease in partial pressure of oxygen (PaO2), blood oxygen saturation (SaO2), and oxygenation index (PaO2/FiO2), along with a marked increase in partial pressure of carbon dioxide (PaCO2) and lung W/D ratio (P<0.01). Additionally, levels of TNF-α, IL-6, and IL-1β in BALF were significantly elevated (P<0.01). Histopathological analysis of lung tissue showed significant inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Pronounced increases were observed in the mRNA expression levels of p38 MAPK, NF-κB p65, inhibitor of NF-κB (IκBα), B-cell lymphoma-2 associated x protein (Bax), and Caspases-3, as well as the protein expression levels of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3, while the mRNA and protein expression of Bcl-2 was downregulated (P<0.01). Compared with the model group, MKD significantly elevated PaO2, SaO2, and PaO2/FiO2 while reducing PaCO2 and W/D ratio in rats (P<0.01). It also greatly reduced TNF-α, IL-6, and IL-1β levels in BALF (P<0.01) and alleviated inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Additionally, it downregulated the mRNA expression of p38 MAPK, NF-κB p65, IκBα, Bax, Caspases-3, as well as protein expression of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3 in lung tissue (P<0.05, P<0.01), while significantly upregulating mRNA and protein expression of Bcl-2 (P<0.01). ConclusionMKD exerts a protective effect on OA-induced ALI rats, potentially through the regulation of the p38 MAPK/NF-κB signaling pathway to inhibit inflammation and apoptosis.
9.Impact of Maxing Kugan Decoction on Inflammatory Response and Apoptosis in Oleic Acid-induced Acute Lung Injury in Rats via p38 MAPK/NF-κB Signaling Pathway
Taiqiang JIAO ; Yi NAN ; Ling YUAN ; Jiaqing LI ; Yang NIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):108-116
ObjectiveTo investigate the effects of Maxing Kugan decoction (MKD) on inflammatory response and apoptosis in rats with oleic acid (OA)-induced acute lung injury (ALI) and explore its mechanism of action. MethodsSixty Sprague-Dawley (SD) rats were randomly assigned into six groups: a control group, a model group, a dexamethasone-treated group (2 mg·kg-1), and three MKD-treated groups at low, medium, and high doses (3.1, 6.2,12.4 g·kg-1). Each group was administered either an equivalent volume of normal saline or the corresponding concentration of MKD by gavage for seven consecutive days. The model group and each administration group were used to establish the ALI model by tail vein injection of OA (0.2 mL·kg-1). Twelve hours after modeling, blood gas analyses were conducted, and the wet-to-dry (W/D) weight ratio of lung tissue was measured for each group. Additionally, enzyme-linked immunosorbent assay (ELISA) was employed to quantify the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF) of the rats. Cell damage and apoptosis in lung tissue were examined via hematoxylin-eosin (HE) staining and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assays, and the results were subsequently scored. The expression levels of the p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor kappa-B (NF-κB) signaling pathway and apoptosis-related proteins and mRNAs were assessed using Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the control group, the model group exhibited a significant decrease in partial pressure of oxygen (PaO2), blood oxygen saturation (SaO2), and oxygenation index (PaO2/FiO2), along with a marked increase in partial pressure of carbon dioxide (PaCO2) and lung W/D ratio (P<0.01). Additionally, levels of TNF-α, IL-6, and IL-1β in BALF were significantly elevated (P<0.01). Histopathological analysis of lung tissue showed significant inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Pronounced increases were observed in the mRNA expression levels of p38 MAPK, NF-κB p65, inhibitor of NF-κB (IκBα), B-cell lymphoma-2 associated x protein (Bax), and Caspases-3, as well as the protein expression levels of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3, while the mRNA and protein expression of Bcl-2 was downregulated (P<0.01). Compared with the model group, MKD significantly elevated PaO2, SaO2, and PaO2/FiO2 while reducing PaCO2 and W/D ratio in rats (P<0.01). It also greatly reduced TNF-α, IL-6, and IL-1β levels in BALF (P<0.01) and alleviated inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Additionally, it downregulated the mRNA expression of p38 MAPK, NF-κB p65, IκBα, Bax, Caspases-3, as well as protein expression of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3 in lung tissue (P<0.05, P<0.01), while significantly upregulating mRNA and protein expression of Bcl-2 (P<0.01). ConclusionMKD exerts a protective effect on OA-induced ALI rats, potentially through the regulation of the p38 MAPK/NF-κB signaling pathway to inhibit inflammation and apoptosis.
10.Update on the treatment navigation for functional cure of chronic hepatitis B: Expert consensus 2.0
Di WU ; Jia-Horng KAO ; Teerha PIRATVISUTH ; Xiaojing WANG ; Patrick T.F. KENNEDY ; Motoyuki OTSUKA ; Sang Hoon AHN ; Yasuhito TANAKA ; Guiqiang WANG ; Zhenghong YUAN ; Wenhui LI ; Young-Suk LIM ; Junqi NIU ; Fengmin LU ; Wenhong ZHANG ; Zhiliang GAO ; Apichat KAEWDECH ; Meifang HAN ; Weiming YAN ; Hong REN ; Peng HU ; Sainan SHU ; Paul Yien KWO ; Fu-sheng WANG ; Man-Fung YUEN ; Qin NING
Clinical and Molecular Hepatology 2025;31(Suppl):S134-S164
As new evidence emerges, treatment strategies toward the functional cure of chronic hepatitis B are evolving. In 2019, a panel of national hepatologists published a Consensus Statement on the functional cure of chronic hepatitis B. Currently, an international group of hepatologists has been assembled to evaluate research since the publication of the original consensus, and to collaboratively develop the updated statements. The 2.0 Consensus was aimed to update the original consensus with the latest available studies, and provide a comprehensive overview of the current relevant scientific literatures regarding functional cure of hepatitis B, with a particular focus on issues that are not yet fully clarified. These cover the definition of functional cure of hepatitis B, its mechanisms and barriers, the effective strategies and treatment roadmap to achieve this endpoint, in particular new surrogate biomarkers used to measure efficacy or to predict response, and the appropriate approach to pursuing a functional cure in special populations, the development of emerging antivirals and immunomodulators with potential for curing hepatitis B. The statements are primarily intended to offer international guidance for clinicians in their practice to enhance the functional cure rate of chronic hepatitis B.


Result Analysis
Print
Save
E-mail