1.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
2.Causal relationship between circulating inflammatory cytokines and bone mineral density based on two-sample Mendelian randomization
Shuai CHEN ; Jie JIN ; Huawei HAN ; Ningsheng TIAN ; Zhiwei LI
Chinese Journal of Tissue Engineering Research 2025;29(8):1556-1564
BACKGROUND:Many recent studies have shown a close relationship between inflammatory cytokines and osteoporosis and bone mineral density(BMD).However,the causal relationship between inflammatory cytokines and BMD has not been fully revealed. OBJECTIVE:To explore the potential causal relationship between inflammatory cytokines and BMD using a two-sample Mendelian randomization analysis. METHODS:The single nucleotide polymorphisms associated with 41 circulating inflammatory cytokines were selected from the open database of genome-wide association studies(GWAS)as instrumental variables.The GWAS data about BMD were from the Genetic Factors for Osteoporosis Consortium,involving a total of 32 735 individuals of European ancestry.Inverse variance weighting was used as the primary analysis to evaluate the causal effect.Weighted median,MR Egger regression,simple mode,and weighted mode methods were used to supplement the explanation.We used the MR-Egger intercept and MR-PRESSO method to conduct a pleiotropy test,the Cochran's Q test was used to determine whether there was heterogeneity in the results,and the leave-one-out method was used to evaluate the stability of the results.In addition,to more accurately assess the causality,the Bonferroni-corrected test was used to identify inflammatory cytokines that have a strong causal relationship with BMD. RESULTS AND CONCLUSION:(1)According to the results of the inverse variance weighting method,we found a positive causal relationship between interleukin-8 and lumbar spine BMD[β=0.075,95%confidence interval(CI):0.033-0.117,P=0.000 5),while a negative causal relationship between interleukin-17 and lumbar spine BMD(β=-0.083,95%CI:-0.152 to-0.014,P=0.018).There might be a negative causal relationship between tumor necrosis factor b and femoral neck BMD(β=-0.053,95%CI:-0.088 to-0.018,P=0.003),while a positive causal relationship between basic fibroblast growth factor and femoral neck BMD(β=0.085,95%CI:0.016-0.154,P=0.015).There might be a negative causal relationship between macrophage inflammatory protein-1a and total body BMD(β=-0.056,95%CI:-0.105 to-0.007,P=0.025).There was a negative causal relationship between interleukin-5(β=-0.019,95%CI:-0.031 to-0.006,P=0.004),stromal cell-derived factor-1a(β=-0.022,95%CI:-0.038 to-0.005,P=0.010),hepatocyte growth factor(β=-0.021,95%CI:-0.041 to-0.002,P=0.030),interleukin-4(β=-0.016,95%CI:-0.032 to-0.001,P=0.034)and heel BMD,while a positive causal relationship between nerve growth factor(β=0.019,95%CI:0.002-0.036,P=0.033),granulocyte colony-stimulating factor(β=0.011,95%CI:0.000-0.022,P=0.050),and heel BMD.Meanwhile,after the Bonferroni-corrected test,there was a strong positive causal effect between interleukin-8 and lumbar spine BMD(P=0.000 5).And consistent directional effects for all analyses were observed in MR Egger,weighted median,simple mode,and weighted mode methods.(2)Sensitivity analyses revealed no heterogeneity,pleiotropy,or outliers for the causal effect of circulating inflammatory cytokines on BMD.
3.Application of "balance-shaped sternal elevation device" in the subxiphoid uniportal video-assisted thoracoscopic surgery for anterior mediastinal masses resection
Jinlan ZHAO ; Weiyang CHEN ; Chunmei HE ; Yu XIONG ; Lei WANG ; Jie LI ; Lin LIN ; Yushang YANG ; Lin MA ; Longqi CHEN ; Dong TIAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):308-312
Objective To introduce an innovative technique, the "balance-shaped sternal elevation device" and its application in the subxiphoid uniportal video-assisted thoracoscopic surgery (VATS) for anterior mediastinal masses resection. Methods Patients who underwent single-port thoracoscopic assisted anterior mediastinal tumor resection through the xiphoid process at the Department of Thoracic Surgery, West China Hospital, Sichuan University from May to June 2024 were included, and their clinical data were analyzed. Results A total of 7 patients were included, with 3 males and 4 females, aged 28-72 years. The diameter of the tumor was 1.9-17.0 cm. The operation time was 62-308 min, intraoperative blood loss was 5-100 mL, postoperative chest drainage tube retention time was 0-9 days, pain score on the 7th day after surgery was 0-2 points, and postoperative hospital stay was 3-12 days. All patients underwent successful and complete resection of the masses and thymus, with favorable postoperative recovery. Conclusion The "balance-shaped sternal elevation device" effectively expands the retrosternal space, providing surgeons with satisfactory surgical views and operating space. This technique significantly enhances the efficacy and safety of minimally invasive surgery for anterior mediastinal masses, reduces trauma and postoperative pain, and accelerates patient recovery, demonstrating important clinical significance and application value.
4.Establishment of HPLC fingerprint and content determination of Gerbera delavayi
Lisha SUN ; Li JIANG ; Li LI ; Lin TIAN ; Yang WANG ; Jie PAN ; Yueting LI ; Yongjun LI
China Pharmacy 2025;36(9):1052-1058
OBJECTIVE To establish the fingerprint of Gerbera delavayi and the methods for the content determination of 11 components in G. delavayi. METHODS High-performance liquid chromatography(HPLC)was adopted to establish the fingerprints of 13 batches of G. delavayi(No. S1-S13), and the similarities were evaluated according to Similarity Evaluation System of Chromatographic Fingerprint of TCM (2012 edition), while the common peaks were identified. Hierarchical clustering analysis (HCA), principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were carried out by using SPSS 25.0 software and SIMCA 14.1 software. The contents of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, 3,8-dihydroxy-4-methoxy-2-oxo-2H-1-benzopyran-5-carboxylic acid, caffeic acid, 3-hydroxy-4-methoxy-2- oxo-2H-1-benzopyran- 5-carboxylic acid, luteolin-7-O-β-D-glucoside, isochlorogenic acid A, apigenin-7-O-β-D-glucoside, isochlorogenic acid C and xanthotoxin were determined by HPLC. RESULTS The similarities in HPLC fingerprint of 13 batches of G. delavayi were 0.801-0.994; a total of 38 common peaks were identified and 13 common peaks were identified. The results of HCA showed that S1-S5 and S7 were clustered into one group, S6 into one category, S8 into one category, S9 and S11 into one category, S10, S12 and S13 into one category, and the results of PCA were consistent with them. The results of OPLS-DA showed that variable importance values for the projection of peak 7 (chlorogenic acid), peak 21 (isochlorogenic acid A), peak 26 (xanthotoxin), peak 19 (isochlorogenic acid B), peak 33, peak 13, peak 23 (isochlorogenic acid C), peak 2 (new chlorogenic acid), peak 17 (luteolin-7-O-β-D- glucoside) were greater than 1. The above 11 components had good linearity in their respective detection concentration ranges (r was greater than 0.999). RSDs of precision, repeatability, and stability tests were not more than 2% (n=6). The average recovery rates were 92.54%-105.55%, and the RSDs were 0.83%-1.93% (n=6). The average contents of 11 components were 0.744, 5.014, 0.646, 0.431, 0.069, 0.582, 0.979, 2.754, 0.157, 1.284 and 2.943 mg/g, respectively. CONCLUSIONS The constructed HPLC fingerprint and content determination methods are simple, accurate and stable, which can provide reference for quality control of G. delavayi. Xanthotoxin, chlorogenic acid, isochlorogenic acid A, luteolin-7-O- β -D-glucoside, isochlorogenic acid C and new chlorogenic acid can be used as markers for G. delavayi.
5.Subxiphoid uniportal approach using double sternum retractors versus subxiphoid and subcostal arch three-portal approach of video-assisted thoracoscopic surgery thymectomy for thymoma treatment: A retrospective cohort study
Jinlan ZHAO ; Weiyang CHEN ; Lin LIN ; Lei WANG ; Jie LI ; Lin MA ; Longqi CHEN ; Hong CHEN ; Dong TIAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):482-487
Objective To compare the efficacy and safety of video-assisted thoracoscopic surgery (VATS) thymectomy for the treatment of thymoma through subxiphoid uniportal approach using double sternum retractors, and subxiphoid and subcostal arch approach. Methods We retrospectively analyzed the clinical data of the patients diagnosed with thymoma who underwent VATS thymectomy from June 2023 to June 2024 in West China Hospital. Patients were categorized based on the surgical approach into two groups: a subxiphoid uniportal VATS thymectomy (SUVT) group and a subxiphoid and subcostal arch VATS thymectomy (SASAT) group. Comparisons were made between the two groups regarding surgical duration, intraoperative blood loss, postoperative drainage, thymoma size and location, and postoperative pain assessed using the visual analogue scale (VAS). Results The SUVT group consisted of 20 patients, including 11 males and 9 females, with an average age of (51.5±14.3) years. The SASAT group comprised 40 patients, including 26 males and 14 females, with an average age of (50.0±13.0) years. Compared to the SASAT group, the SUVT group had significantly larger thymomas [ (5.9±2.7) cm vs. (4.2±2.1) cm, P=0.010] and a higher proportion of neoplasms located in the superior mediastinum (30.0% vs. 2.5%, P=0.007). Additionally, the VAS pain scores on postoperative days 3, 7, and 30 were significantly lower in the SUVT group compared to the SASAT group (P<0.05). There were no statistical differences between the two groups in demographic characteristics, operative time, intraoperative blood loss, duration and volume of postoperative drainage, length of postoperative hospital stay, or the VAS pain score on the first postoperative day. Conclusion SUVT using double sternum retractors significantly reduces postoperative pain and provides superior efficacy in the resection of larger thymomas or those situated in the superior mediastinum.
6.Research progress of nucleus tractus solitarius involved in central regulation of hypertension.
Yu TIAN ; Na LI ; Yi ZHANG ; Hong-Jie WANG
Acta Physiologica Sinica 2025;77(1):85-94
The nucleus tractus solitarius (NTS) is the primary brain region for receiving and integrating cardiovascular afferent signals. It plays a crucial role in maintaining balance of autonomic nervous system and regulating blood pressure through cardiovascular reflexes. Neurons within the NTS form complex synaptic connections and interact reciprocally with other brain regions. The NTS regulates autonomic nervous system activity and arterial blood pressure through modulating baroreflex, sympathetic nerve activity, renin-angiotensin-aldosterone system, and oxidative stress. Dysfunctions in NTS activity may contribute to hypertension. Understanding the NTS' role in centrally regulating blood pressure and alterations of neurotransmission or signaling pathways in the NTS may provide rationale for new therapeutic strategies of prevention and treatment. This review summarizes the research findings on autonomic nervous system regulation and arterial blood pressure control by NTS, as well as unresolved questions, in order to provide reference for future investigation.
Solitary Nucleus/physiopathology*
;
Hypertension/physiopathology*
;
Humans
;
Animals
;
Autonomic Nervous System/physiopathology*
;
Blood Pressure/physiology*
;
Baroreflex/physiology*
;
Renin-Angiotensin System/physiology*
;
Sympathetic Nervous System/physiology*
7.Hydrogen sulfide ameliorates hypoxic pulmonary hypertension in rats by inhibiting aerobic glycolysis-pyroptosis.
Yuan CHENG ; Yun-Na TIAN ; Man HUANG ; Jun-Peng XU ; Wen-Jie CAO ; Xu-Guang JIA ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(3):465-471
The present study aimed to explore whether hydrogen sulfide (H2S) improved hypoxic pulmonary hypertension (HPH) in rats by inhibiting aerobic glycolysis-pyroptosis. Male Sprague-Dawley (SD) rats were randomly divided into normal group, normal+NaHS group, hypoxia group, and hypoxia+NaHS group, with 6 rats in each group. The control group rats were placed in a normoxic (21% O2) environment and received daily intraperitoneal injections of an equal volume of normal saline. The normal+NaHS group rats were placed in a normoxic environment and intraperitoneally injected with 14 μmol/kg NaHS daily. The hypoxia group rats were placed in a hypoxia chamber, and the oxygen controller inside the chamber maintained the oxygen concentration at 9% to 10% by controlling the N2 flow rate. An equal volume of normal saline was injected intraperitoneally every day. The hypoxia+NaHS group rats were also placed in an hypoxia chamber and intraperitoneally injected with 14 μmol/kg NaHS daily. After the completion of the four-week modeling, the mean pulmonary artery pressure (mPAP) of each group was measured using right heart catheterization technique, and the right ventricular hypertrophy index (RVHI) was weighed and calculated. HE staining was used to observe pathological changes in lung tissue, Masson staining was used to observe fibrosis of lung tissue, and Western blot was used to detect protein expression levels of hexokinase 2 (HK2), pyruvate dehydrogenase (PDH), pyruvate kinase isozyme type M2 (PKM2), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), GSDMD-N-terminal domain (GSDMD-N), Caspase-1, interleukin-1β (IL-1β) and IL-18 in lung tissue. ELISA was used to detect contents of IL-1β and IL-18 in lung tissue. The results showed that, compared with the normal control group, there were no significant changes in all indexes in the normal+NaHS group, while the hypoxia group exhibited significantly increased mPAP and RVHI, thickened pulmonary vascular wall, narrowed lumen, increased collagen fibers, up-regulated expression levels of aerobic glycolysis-related proteins (HK2 and PKM2), up-regulated expression levels of pyroptosis-related proteins (NLRP3, GSDMD-N, Caspase-1, IL-1β, and IL-18), and increased contents of IL-1β and IL-18. These changes of the above indexes in the hypoxia group were significantly reversed by NaHS. These results suggest that H2S can improve rat HPH by inhibiting aerobic glycolysis-pyroptosis.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Hypertension, Pulmonary/metabolism*
;
Glycolysis/drug effects*
;
Hydrogen Sulfide/therapeutic use*
;
Hypoxia/complications*
;
Rats
;
Pyroptosis/drug effects*
8.Mini-barcode development based on chloroplast genome of Descurainiae Semen Lepidii Semen and its adulterants and its application in Chinese patent medicine.
Hui LI ; Yu-Jie ZENG ; Xin-Yi LI ; ABDULLAH ; Yu-Hua HUANG ; Ru-Shan YAN ; Rui SHAO ; Yu WANG ; Xiao-Xuan TIAN
China Journal of Chinese Materia Medica 2025;50(7):1758-1769
Descurainiae Semen Lepidii Semen, also known as Tinglizi, originates from Brassicaceae plants Descurainia sophia or Lepidium apetalum. The former is commonly referred to as "Southern Tinglizi(Descurainiae Semen)", while the latter is known as "Northern Tinglizi(Lepidii Semen)". To scientifically and accurately identify the origin of Tinglizi medicinal materials and traditional Chinese medicine products, this study developed a specific DNA mini-barcode based on chloroplast genome sequences. By combining the DNA mini-barcode with DNA metabarcoding technology, a method for the qualitative and quantitative identification of Tinglizi medicinal materials and Chinese patent medicines was established. In this study, chloroplast genomes of Southern Tinglizi and Northern Tinglizi and seven commonly encountered counterfeit products were downloaded from the GenBank database. Suitable polymorphic regions were identified to differentiate these species, enabling the development of the DNA mini-barcode. Using DNA metabarcoding technology, medicinal material mixtures of Southern and Northern Tinglizi, as well as the most common counterfeit product, Capsella bursa-pastoris seeds, were analyzed to validate the qualitative and quantitative capabilities of the mini-barcode and determine its minimum detection limit. Additionally, the mini-barcode was applied to Chinese patent medicines containing Tinglizi to authenticate their botanical origin. The results showed that the developed mini-barcode(psbB) exhibited high accuracy and specificity, effectively distinguishing between the two authentic origins of Tinglizi and commonly encountered counterfeit products. The analysis of mixtures demonstrated that the mini-barcode had excellent qualitative and quantitative capabilities, accurately identifying the composition of Chinese medicinal materials in mixed samples with varying proportions. Furthermore, the analysis of Chinese patent medicines revealed the presence of the adulterant species(Capsella bursa-pastoris) in addition to the authentic species(Southern and Northern Tinglizi), indicating the occurrence of adulteration in commercially available Tinglizi-containing products. This study developed a method for the qualitative and quantitative identification of multi-origin Chinese medicinal materials and related products, providing a model for research on other multi-origin Chinese medicinal materials.
DNA Barcoding, Taxonomic/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Drug Contamination
;
Genome, Chloroplast
;
Medicine, Chinese Traditional
9.Research progress in effect of traditional Chinese medicine on aerobic glycolysis in colorectal cancer.
Xu MA ; Sheng-Long LI ; Guang-Rong ZHENG ; Da-Cheng TIAN ; Gang-Gang LU ; Jie GAO ; Yu-Qi AN ; Li-Yuan CAO ; Liang LI ; Xiao-Yong TANG
China Journal of Chinese Materia Medica 2025;50(6):1496-1506
Colorectal cancer(CRC) is a common malignant tumor worldwide. Due to the treatment intolerance and side effects, CRC rank the top among various cancers regarding the incidence and mortality rates. Therefore, exploring new therapies is of great significance for the treatment of CRC. Aerobic glycolysis(AEG) plays an important role in the microenvironment formation, proliferation, metastasis, and recurrence of CRC and other tumor cells. It has been confirmed that intervening in the AEG pathway can effectively curb CRC. The active ingredients and compound prescriptions of traditional Chinese medicine(TCM) can effectively inhibit the proliferation, metastasis, and drug resistance and regulate the apoptosis of tumor cells by modulating AEG-associated transport proteins [eg, glucose transporters(GLUT)], key enzymes [hexokinase(HK) and phosphofructokinase(PFK)], key genes [hypoxia-inducible factor 1(HIF-1) and oncogene(c-Myc)], and signaling pathways(MET/PI3K/Akt/mTOR). Accordingly, they can treat CRC, reduce the recurrence, and improve the prognosis of CRC. Although AEG plays a key role in the development and progression of CRC, the specific mechanisms are not yet fully understood. Therefore, this article delves into the intrinsic connection of the targets and mechanisms of the AEG pathway with CRC from the perspective of tumor cell glycolysis and explores how active ingredients(oxymatrine, kaempferol, and dioscin) and compound prescriptions(Quxie Capsules, Jiedu Sangen Decoction, and Xianlian Jiedu Prescription) of TCM treat CRC by intervening in the AEG pathway. Additionally, this article explores the shortcomings in the current research, aiming to provide reliable targets and a theoretical basis for treating CRC with TCM.
Humans
;
Colorectal Neoplasms/genetics*
;
Drugs, Chinese Herbal/therapeutic use*
;
Glycolysis/drug effects*
;
Animals
;
Medicine, Chinese Traditional
;
Signal Transduction/drug effects*
10.Material basis of bitter taste and taste-effect relationship in Cistanche deserticola based on UPLC-Q-Orbitrap HRMS combined with molecular docking.
Li-Ying TIAN ; Ming-Jie LI ; Qiang HOU ; Zheng-Yuan WANG ; Ai-Sai-Ti GULIZIYE ; Jun-Ping HU
China Journal of Chinese Materia Medica 2025;50(6):1569-1580
Based on ultra-performance liquid chromatography-quadrupole-electrostatic field Orbitrap high-resolution mass spectrometry(UPLC-Q-Orbitrap HRMS) technology and molecular docking, the bitter-tasting substances(hereafter referred to as "bitter substances") in Cistanche deserticola extract were investigated, and the bitter taste and efficacy relationship was explored to lay the foundation for future research on de-bittering and taste correction. Firstly, UPLC-Q-Orbitrap HRMS was used for the qualitative analysis of the constituents of C. deserticola, and 69 chemical components were identified. These chemical components were then subjected to molecular docking with the bitter taste receptor, leading to the screening of 20 bitter substances, including 6 phenylethanol glycosides, 5 flavonoids, 3 phenolic acids, 2 cycloalkenyl ether terpenes, 2 alkaloids, and 2 other components. Nine batches of fresh C. deserticola samples were collected from the same origin but harvested at different months. These samples were divided into groups based on harvest month and plant part. The bitterness was quantified using an electronic tongue, and the content of six potential bitter-active compounds(pineconotyloside, trichothecene glycoside, tubulin A, iso-trichothecene glycoside, jinshihuaoside, and jingnipinoside) was determined by high-performance liquid chromatography(HPLC). The total content of phenylethanol glycosides, polysaccharides, alkaloids, flavonoids, and phenolic acids was determined using UV-visible spectrophotometry. Chemometric analyses were then conducted, including Pearson's correlation analysis, gray correlation analysis, and orthogonal partial least squares discriminant analysis(OPLS-DA), to identify the bitter components in C. deserticola. The results were consistent with the molecular docking findings, and the two methods mutually supported each other. Finally, network pharmacological predictions and analyses were performed to explore the relationship between the targets of bitter substances and their efficacy. The results indicated that key targets of the bitter substances included EGFR, PIK3CB, and PTK2. These substances may exert their bitter effects by acting on relevant disease targets, confirming that the bitter substances in C. deserticola are the material basis of its bitter taste efficacy. In conclusion, this study suggests that the phenylethanol glycosides, primarily pineconotyloside, mauritiana glycoside, and gibberellin, are the material basis for the "bitter taste" of C. deserticola. The molecular docking technique plays a guiding role in the screening of bitter substances in traditional Chinese medicine(TCM). The bitter substances in C. deserticola not only contribute to its bitter taste but also support the concept of the "taste-efficacy" relationship in TCM, providing valuable insights and references for future research in this area.
Molecular Docking Simulation
;
Taste
;
Chromatography, High Pressure Liquid
;
Cistanche/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Mass Spectrometry

Result Analysis
Print
Save
E-mail