1.Analysis of Animal Models of Dry Age-related Macular Degeneration Based on Clinical Disease-syndrome Characteristics of Traditional Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Yun GAO ; Jiahao LI ; Jianying YANG ; Xiaoshan ZHANG ; Honghao BI ; Menglu MIAO ; Huiyi GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):191-197
ObjectiveAge-related macular degeneration (AMD) is one of the leading causes of low vision and blindness in people over 50 years old, and dry AMD (dAMD) is one type for which there is currently no clear treatment. On the basis of the diagnosis and clinical characteristics of dAMD in traditional Chinese and Western medicine, this paper evaluated the fitting degrees of existing animal models of dAMD with clinical characteristics according to the evaluation methods of animal models, and put forward suggestions and prospects. MethodsLiterature on animal models of dAMD was searched against database, and the characteristics of the models were assigned according to the diagnosis criteria of diseases and syndromes of traditional Chinese and Western medicine, and the fitting degrees of the models with clinical characteristics were analyzed and evaluated. ResultsAt present, the animal models of dAMD are mainly established targeting complement factors, chemokines, oxidative damage, lipid/glucose metabolism, and natural strains. Most of the models can simulate the major pathological changes of dAMD, showing the fitting degree of 25%-50% with clinical characteristics in Western medicine. However, the evaluation of traditional Chinese medicine (TCM) syndromes, especially the evaluation of secondary syndromes, is missing, and the models present low fitting degrees with the clinical characteristics in TCM. ConclusionExisting animal models of dAMD are mostly established under the guidance of Western diagnostic standards, which reproduce the main disease characteristics of Western medicine and lack observation of TCM syndromes. Future studies can pay attention to the intervention factors and evaluation systems of spleen deficiency Qi deficiency and liver-kidney Yin deficiency syndrome and build the animal model of dAMD with integration of disease and syndrome based on clinical characteristics of traditional Chinese and Western medicine.
2.Analysis of Animal Models of Dry Age-related Macular Degeneration Based on Clinical Disease-syndrome Characteristics of Traditional Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Yun GAO ; Jiahao LI ; Jianying YANG ; Xiaoshan ZHANG ; Honghao BI ; Menglu MIAO ; Huiyi GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):191-197
ObjectiveAge-related macular degeneration (AMD) is one of the leading causes of low vision and blindness in people over 50 years old, and dry AMD (dAMD) is one type for which there is currently no clear treatment. On the basis of the diagnosis and clinical characteristics of dAMD in traditional Chinese and Western medicine, this paper evaluated the fitting degrees of existing animal models of dAMD with clinical characteristics according to the evaluation methods of animal models, and put forward suggestions and prospects. MethodsLiterature on animal models of dAMD was searched against database, and the characteristics of the models were assigned according to the diagnosis criteria of diseases and syndromes of traditional Chinese and Western medicine, and the fitting degrees of the models with clinical characteristics were analyzed and evaluated. ResultsAt present, the animal models of dAMD are mainly established targeting complement factors, chemokines, oxidative damage, lipid/glucose metabolism, and natural strains. Most of the models can simulate the major pathological changes of dAMD, showing the fitting degree of 25%-50% with clinical characteristics in Western medicine. However, the evaluation of traditional Chinese medicine (TCM) syndromes, especially the evaluation of secondary syndromes, is missing, and the models present low fitting degrees with the clinical characteristics in TCM. ConclusionExisting animal models of dAMD are mostly established under the guidance of Western diagnostic standards, which reproduce the main disease characteristics of Western medicine and lack observation of TCM syndromes. Future studies can pay attention to the intervention factors and evaluation systems of spleen deficiency Qi deficiency and liver-kidney Yin deficiency syndrome and build the animal model of dAMD with integration of disease and syndrome based on clinical characteristics of traditional Chinese and Western medicine.
3.Regulation of Oxidative Stress by Traditional Chinese Medicine in Prevention and Treatment of Myocardial Ischemia-reperfusion Injury: A Review
Haosen ZHAO ; Weijie REN ; Jiahao LI ; Peili WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):268-276
Myocardial ischemia-reperfusion injury (MIRI) is a major complication following coronary revascularization. Studies indicate that its pathophysiological mechanisms of MIRI are closely associated with oxidative stress, iron overload, inflammatory responses, and lipid peroxidation. Oxidative stress refers to an imbalance in redox homeostasis under pathological conditions, characterized by the abnormal accumulation of reactive oxygen species (ROS), which disrupts the dynamic balance between pro-oxidant systems and antioxidant defense networks. In recent years, traditional Chinese medicine (TCM) has demonstrated unique advantages in the prevention and treatment of MIRI due to its multi-target and multi-pathway antioxidant properties. Research reveals that TCM primarily exerts protective effects against oxidative stress-induced MIRI by regulating signaling pathways such as nuclear factor erythroid 2-related factor 2 (Nrf2), adenosine monophosphate-activated protein kinase (AMPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), nuclear factor kappa-B (NF-κB), Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), and protein kinase C beta Ⅱ/nicotinamide adenine dinucleotide phosphate oxidase 2/reactive oxygen species (PKCβⅡ/NOX2/ROS). This article reviews recent literature on TCM monomers, compound formulas, and their active components, which alleviate oxidative stress to prevent and treat MIRI by modulating the aforementioned signaling pathways. It summarizes a concise overview of the molecular mechanisms by which oxidative stress-related signaling pathways lead to MIRI, discusses how TCM regulates these pathways to reduce oxidative stress-induced MIRI, and explores clinical application prospects and research challenges, aiming to provide a theoretical reference for the research and clinical management of MIRI.
4.Association of physical activity level and all-cause mortality among stroke survivors: evidence from NHANES 2007-2018.
Fude LIU ; Xiangning HAN ; Yawen CHENG ; Ning ZHU ; Shiliang JIANG ; Jiahao LI ; Jin ZHAO ; Guogang LUO
Environmental Health and Preventive Medicine 2025;30():27-27
BACKGROUND:
Post-stroke disability diminishes the physical activity (PA) level of survivors, potentially affecting their long-term prognosis. This study endeavors to explore the correlation between daily PA level and the all-cause mortality in patients with a history of stoke in the United States.
METHODS:
Data of stroke survivors were sourced from the National Health and Nutritional Examination Survey (NHANES) 2007-2018. The population was stratified into three groups based on their PA level. Kaplan-Meier method with log-rank tests for significance was used for survival analysis. Weighted Cox proportional hazards regression models were employed to estimate the hazard ratios (HRs) for all-cause mortality. Subgroup analysis was conducted to strengthen the results.
RESULTS:
A total of 1395 participants were recruited, comprising 679 males and 716 females, with a median age of 68 years. Based on their PA levels, 779 individuals were classified as inactive, 156 as insufficiently active, and 460 as sufficiently active. Following a median observation period of 59 months, there were 476 recorded deaths, with 349, 47, and 80 cases in the three respective groups. Compared to the inactive group, the HRs and 95% confidence intervals (CIs) for all-cause mortality in participants who were insufficiently active and sufficiently active were 0.58 (0.40, 0.84) and 0.47 (0.33, 0.67), respectively. The Kaplan-Meier curve revealed a significant difference in overall survival between the three groups, as confirmed by the log-rank test (P < 0.0001). Subgroup analysis further validated our results and demonstrated that the protective impact of PA on stroke prognosis varies according to distinct characteristics.
CONCLUSIONS
The results indicate that increased levels of PA are associated with a protective effect on long-term mortality among stroke survivors. Further prospective longitudinal studies are necessary to elucidate the optional PA level and special exercise guideline targeting this population.
Humans
;
Male
;
Female
;
Aged
;
Exercise
;
Middle Aged
;
Nutrition Surveys
;
Stroke/mortality*
;
United States/epidemiology*
;
Survivors/statistics & numerical data*
;
Aged, 80 and over
;
Mortality
5.Establishment and application of a UPLC-MS/MS method for the determination of tiletamine and its metabolite in biological samples.
Zihao CAI ; Wenguang YAN ; Jiahao LI ; Yanjun DING ; Jiang LING
Journal of Central South University(Medical Sciences) 2025;50(6):1002-1012
OBJECTIVES:
Tiletamine, a veterinary anesthetic, has emerged as a novel psychoactive substance and has been abused in many parts of the world, causing great harm to public health. However, the sensitivity of existing detection methods cannot meet the needs of forensic practice. This study aims to establish an ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of tiletamine and its metabolite desethyltiletamine in human biological samples, and to verify its applicability in forensic practice.
METHODS:
SKF525A was used as the internal standard. Biological samples were extracted with acetonitrile containing 1 ng/mL SKF525A, vortexed for 10 min, ultrasonicated for 20 min, centrifuged at 10 000 r/min for 10 min, and 500 μL of the supernatant was filtered through a 0.22 μm membrane. Analyses were performed using an ACQUITY UPLC H-Class PLUS system and an XEVO TQ-S Micro triple quadrupole mass spectrometer. An ACQUITY UPLC® BEH C18 (1.7 µm, 2.1 mm×100 mm) column at a flow rate of 0.3 mL/min was used, and four mobile phase systems were tested to optimize separation. Detection used positive electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode, with quantifier ion transitions of mass to charge 224.043→179.016 for tiletamine and mass to charge 196.08→151.06 for desethyltiletamine. Calibration curves were established over 0.1-200 ng/mL in spiked blood samples. The linear range, limit of detection (LOD), and limit of quantification (LOQ) were determined. Low (5 ng/mL), medium (20 ng/mL), and high (100 ng/mL) concentrations of tiletamine were spiked into blood, liver, and kidney to evaluate precision, accuracy, matrix effect, recovery, and stability. Finally, actual forensic case samples were tested to validate applicability.
RESULTS:
The established UPLC-MS/MS method achieved simultaneous detection of tiletamine and desethyltiletamine in human biological samples, with retention times of 3.42 min and 2.82 min, respectively. Using mobile phase A (20 mmol/L ammonium acetate and 0.1% formic acid in water) and mobile phase B (acetonitrile) produced the best separation. In blood, tiletamine showed good linearity from 0.1-200 ng/mL (r=0.992, R2=0.983), LOD 0.03 ng/mL, LOQ 0.1 ng/mL, recovery 92%-107%, and matrix effect 71%-99%. In liver and kidney, recoveries were 91%-98% and 93%-104%, and matrix effects were 69%-96% and 72%-100%, respectively. Intra- and inter-day precision [expressed as relative standard deviation (RSD)] and accuracy [expressed as relative error (RE)] were within 15%, and samples were stable at -20 ℃. Tiletamine was detected in actual case samples at 0.37 μg/mL (blood), 0.15 μg/g (liver), 0.11 μg/g (kidney) in case 1, and 8.75 ng/mL (blood) in case 2; desethyltiletamine was also detected in blood.
CONCLUSIONS
The UPLC-MS/MS method is efficient, accurate, and sensitive, and is suitable for detecting tiletamine and desethyltiletamine in human biological samples.
Tandem Mass Spectrometry/methods*
;
Humans
;
Chromatography, High Pressure Liquid/methods*
;
Substance Abuse Detection/methods*
;
Liquid Chromatography-Mass Spectrometry
6.Diabetes-associated sleep fragmentation impairs liver and heart function via SIRT1-dependent epigenetic modulation of NADPH oxidase 4.
Yuanfang GUO ; Jie WANG ; Dongmei ZHANG ; Yufeng TANG ; Quanli CHENG ; Jiahao LI ; Ting GAO ; Xiaohui ZHANG ; Guangping LU ; Mingrui LIU ; Xun GUAN ; Xinyu TANG ; Junlian GU
Acta Pharmaceutica Sinica B 2025;15(3):1480-1496
Although clinical evidence suggests that nonalcoholic fatty liver disease is an established major risk factor for heart failure, it remains unexplored whether sleep disorder-caused hepatic damage contributes to the development of cardiovascular disease (CVD). Here, our findings revealed that sleep fragmentation (SF) displayed notable hepatic detrimental phenotypes, including steatosis and oxidative damage, along with significant abnormalities in cardiac structure and function. All these pathological changes persisted even after sleep recovery for 2 consecutive weeks or more, displaying memory properties. Mechanistically, persistent higher expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) in the liver was the key initiator of SF-accelerated damage phenotypes. SF epigenetically controlled the acetylation of histone H3 lysine 27 (H3K27ac) enrichment at the Nox4 promoter and markedly increased Nox4 expression in liver even after sleep recovery. Moreover, fine coordination of the circadian clock and hepatic damage was strictly controlled by BMAL1-dependent Sirtuin 1 (Sirt1) transcription after circadian misalignment. Accordingly, genetic manipulation of liver-specific Nox4 or Sirt1, along with pharmacological intervention targeting NOX4 (GLX351322) or SIRT1 (Resveratrol), could effectively erase the epigenetic modification of Nox4 by reducing the H3K27ac level and ameliorate the progression of liver pathology, thereby counteracting SF-evoked sustained CVD. Collectively, our findings may pave the way for strategies to mitigate myocardial injury from persistent hepatic detrimental memory in diabetic patients.
7.Melatonin receptor 1a alleviates sleep fragmentation-aggravated testicular injury in T2DM by suppression of TAB1/TAK1 complex through FGFR1.
Xiaohui ZHANG ; Xinyu TANG ; Ting GAO ; Yuanfang GUO ; Guangping LU ; Qingbo LIU ; Jiahao LI ; Jie WANG ; Mingrui LIU ; Dongmei ZHANG ; Yufeng TANG ; Junlian GU
Acta Pharmaceutica Sinica B 2025;15(7):3591-3610
A major obstacle in type 2 diabetes mellitus (T2DM) is sleep fragmentation (SF), which negatively affects testicular function. However, the underlying mechanisms remain to be elucidated. In this study, we demonstrate that SF induces testicular damage through a mechanism involving lipid metabolism, specifically mediated by melatonin (MEL) receptor 1a (MT1). T2DM mice with SF intervention displayed several deleterious phenotypes such as apoptosis, deregulated lipid metabolism, and impaired testicular function. Unexpectedly, sleep recovery (SR) for 2 consecutive weeks could not completely abrogate SF's detrimental effects on lipid deposition and testicular function. Interestingly, MEL and MT1 agonist 2-iodomelatonin (2IM) effectively improved lipid homeostasis, highlighting MEL/2IM as a promising therapeutic drug for SF-trigged testicular damage. Mechanistically, MEL and 2IM activated FGFR1 and sequentially restrained the crosstalk and physical interaction between TAB1 and TAK1, which ultimately suppressed the phosphorylation of TAK1 to block lipid deposition and cell apoptosis caused by SF. The ameliorating effect of MEL/2IM was overtly nullified in Fgfr1 knockout (Fgfr1-KO +/- ) diabetic mice. Meanwhile, testicular-specific overexpression of Tak1 abolished the protective effect of FGF1mut on diabetic mouse testis. Our findings offer valuable insights into the molecular mechanisms underlying the testicular pathogenesis associated with SF and propose a novel therapeutic approach for addressing male infertility in T2DM.
8.Down-regulation of ACADM-mediated lipotoxicity inhibits invasion and metastasis of estrogen receptor-positive breast cancer cells.
Jiahao LI ; Ruiting XIAN ; Rong LI
Journal of Southern Medical University 2025;45(6):1163-1173
OBJECTIVES:
To investigate the effect of downregulation of medium-chain acyl-coenzyme A dehydrogenase (ACADM) on invasion and migration of estrogen receptor-positive breast cancer cells and the underlying mechanism.
METHODS:
The Kaplan-Meier Plotter database was used to analyze the ACADM expression levels in breast cancer and normal tissues and their association with patient prognosis. Human breast cancer MCF-7 and T47D cell lines with lentivirus-mediated ACADM knockdown were established, and their in situ tumor formation and metastasis after tail vein injection were evaluated in nude mice. The MCF-7 and T47D cells with ACADM knockdown and their unmodified parental cells were examined with oil-red O staining assay, ROS assay, mitochondrial respiratory chain function assay before and after treatments with ROS scavenger, Elamipretide (a cardiolipin oxidation inhibitor) or SC79 (an AKT activator), and the changes in migration and invasion abilities of the treated cells were analyzed with Transwell invasion assay and Boyden chamber assay. Western blotting was used to detect protein expression levels of related signaling pathways in the treated cells.
RESULTS:
ACADM overexpression was associated with a significantly shorter overall survival of breast cancer patients. In MCF-7 and T47D cells, ACADM knockdown resulted in downregulation of N calnexin, vimentin, p-P13K and p-AKT proteins, increased levels of free fatty acids and reactive oxygen species, lowered activities of mitochondrial respiratory chain complex III and V, and reduced mitochondrial inner phospholipids. ACADM knockdown significantly decreased the invasive capacity of the cells, which were obviously reversed by treatment with ROS scavenger, Elamipretide, and SC79.
CONCLUSIONS
Down-regulation of ACADM inhibits migration and invasion ability of estrogen receptor-positive breast cancer cells by lowering lipotoxicity and impairing mitochondrial function through the ROS/PI3K/AKT pathway.
Humans
;
Breast Neoplasms/metabolism*
;
Female
;
Mice, Nude
;
Down-Regulation
;
Neoplasm Invasiveness
;
Animals
;
Mice
;
Receptors, Estrogen/metabolism*
;
MCF-7 Cells
;
Cell Movement
;
Cell Line, Tumor
;
Reactive Oxygen Species/metabolism*
;
Acyl-CoA Dehydrogenase/genetics*
;
Signal Transduction
;
Neoplasm Metastasis
;
Proto-Oncogene Proteins c-akt/metabolism*
9.A Personalized Predictor of Motor Imagery Ability Based on Multi-frequency EEG Features.
Mengfan LI ; Qi ZHAO ; Tengyu ZHANG ; Jiahao GE ; Jingyu WANG ; Guizhi XU
Neuroscience Bulletin 2025;41(7):1198-1212
A brain-computer interface (BCI) based on motor imagery (MI) provides additional control pathways by decoding the intentions of the brain. MI ability has great intra-individual variability, and the majority of MI-BCI systems are unable to adapt to this variability, leading to poor training effects. Therefore, prediction of MI ability is needed. In this study, we propose an MI ability predictor based on multi-frequency EEG features. To validate the performance of the predictor, a video-guided paradigm and a traditional MI paradigm are designed, and the predictor is applied to both paradigms. The results demonstrate that all subjects achieved > 85% prediction precision in both applications, with a maximum of 96%. This study indicates that the predictor can accurately predict the individuals' MI ability in different states, provide the scientific basis for personalized training, and enhance the effect of MI-BCI training.
Humans
;
Imagination/physiology*
;
Electroencephalography/methods*
;
Brain-Computer Interfaces
;
Male
;
Female
;
Adult
;
Young Adult
;
Brain/physiology*
;
Movement/physiology*
;
Motor Activity/physiology*
;
Psychomotor Performance/physiology*
10.Noncoding RNA Terc-53 and hyaluronan receptor Hmmr regulate aging in mice.
Sipeng WU ; Yiqi CAI ; Lixiao ZHANG ; Xiang LI ; Xu LIU ; Guangkeng ZHOU ; Hongdi LUO ; Renjian LI ; Yujia HUO ; Zhirong ZHANG ; Siyi CHEN ; Jinliang HUANG ; Jiahao SHI ; Shanwei DING ; Zhe SUN ; Zizhuo ZHOU ; Pengcheng WANG ; Geng WANG
Protein & Cell 2025;16(1):28-48
One of the basic questions in the aging field is whether there is a fundamental difference between the aging of lower invertebrates and mammals. A major difference between the lower invertebrates and mammals is the abundancy of noncoding RNAs, most of which are not conserved. We have previously identified a noncoding RNA Terc-53 that is derived from the RNA component of telomerase Terc. To study its physiological functions, we generated two transgenic mouse models overexpressing the RNA in wild-type and early-aging Terc-/- backgrounds. Terc-53 mice showed age-related cognition decline and shortened life span, even though no developmental defects or physiological abnormality at an early age was observed, indicating its involvement in normal aging of mammals. Subsequent mechanistic study identified hyaluronan-mediated motility receptor (Hmmr) as the main effector of Terc-53. Terc-53 mediates the degradation of Hmmr, leading to an increase of inflammation in the affected tissues, accelerating organismal aging. adeno-associated virus delivered supplementation of Hmmr in the hippocampus reversed the cognition decline in Terc-53 transgenic mice. Neither Terc-53 nor Hmmr has homologs in C. elegans. Neither do arthropods express hyaluronan. These findings demonstrate the complexity of aging in mammals and open new paths for exploring noncoding RNA and Hmmr as means of treating age-related physical debilities and improving healthspan.
Animals
;
Mice
;
RNA, Untranslated/metabolism*
;
Aging/genetics*
;
Mice, Transgenic
;
Telomerase/metabolism*
;
RNA/genetics*
;
Hippocampus/metabolism*
;
Humans
;
Mice, Inbred C57BL

Result Analysis
Print
Save
E-mail