1.Guideline-driven clinical decision support for colonoscopy patients using the hierarchical multi-label deep learning method.
Junling WU ; Jun CHEN ; Hanwen ZHANG ; Zhe LUAN ; Yiming ZHAO ; Mengxuan SUN ; Shufang WANG ; Congyong LI ; Zhizhuang ZHAO ; Wei ZHANG ; Yi CHEN ; Jiaqi ZHANG ; Yansheng LI ; Kejia LIU ; Jinghao NIU ; Gang SUN
Chinese Medical Journal 2025;138(20):2631-2639
BACKGROUND:
Over 20 million colonoscopies are performed in China annually. An automatic clinical decision support system (CDSS) with accurate semantic recognition of colonoscopy reports and guideline-based is helpful to relieve the increasing medical burden and standardize the healthcare. In this study, the CDSS was built under a hierarchical-label interpretable classification framework, trained by a state-of-the-art transformer-based model, and validated in a multi-center style.
METHODS:
We conducted stratified sampling on a previously established dataset containing 302,965 electronic colonoscopy reports with pathology, identified 2041 patients' records representative of overall features, and randomly divided into the training and testing sets (7:3). A total of five main labels and 22 sublabels were applied to annotate each record on a network platform, and the data were trained respectively by three pre-training models on Chinese corpus website, including bidirectional encoder representations from transformers (BERT)-base-Chinese (BC), the BERT-wwm-ext-Chinese (BWEC), and ernie-3.0-base-zh (E3BZ). The performance of trained models was subsequently compared with a randomly initialized model, and the preferred model was selected. Model fine-tuning was applied to further enhance the capacity. The system was validated in five other hospitals with 3177 consecutive colonoscopy cases.
RESULTS:
The E3BZ pre-trained model exhibited the best performance, with a 90.18% accuracy and a 69.14% Macro-F1 score overall. The model achieved 100% accuracy in identifying cancer cases and 99.16% for normal cases. In external validation, the model exhibited favorable consistency and good performance among five hospitals.
CONCLUSIONS
The novel CDSS possesses high-level semantic recognition of colonoscopy reports, provides appropriate recommendations, and holds the potential to be a powerful tool for physicians and patients. The hierarchical multi-label strategy and pre-training method should be amendable to manage more medical text in the future.
Humans
;
Colonoscopy/methods*
;
Deep Learning
;
Decision Support Systems, Clinical
;
Female
;
Male
2.Study on lightweight plasma recognition algorithm based on depth image perception.
Hanwen ZHANG ; Yu SUN ; Hao JIANG ; Jintian HU ; Gangyin LUO ; Dong LI ; Weijuan CAO ; Xiang QIU
Journal of Biomedical Engineering 2025;42(1):123-131
In the clinical stage, suspected hemolytic plasma may cause hemolysis illness, manifesting as symptoms such as heart failure, severe anemia, etc. Applying a deep learning method to plasma images significantly improves recognition accuracy, so that this paper proposes a plasma quality detection model based on improved "You Only Look Once" 5th version (YOLOv5). Then the model presented in this paper and the evaluation system were introduced into the plasma datasets, and the average accuracy of the final classification reached 98.7%. The results of this paper's experiment were obtained through the combination of several key algorithm modules including omni-dimensional dynamic convolution, pooling with separable kernel attention, residual bi-fusion feature pyramid network, and re-parameterization convolution. The method of this paper obtains the feature information of spatial mapping efficiently, and enhances the average recognition accuracy of plasma quality detection. This paper presents a high-efficiency detection method for plasma images, aiming to provide a practical approach to prevent hemolysis illnesses caused by external factors.
Algorithms
;
Humans
;
Hemolysis
;
Plasma
;
Deep Learning
;
Image Processing, Computer-Assisted/methods*
3.Heat stress affects expression levels of circadian clock gene Bmal1 and cyclins in rat thoracic aortic endothelial cells.
Xiaoyu CHANG ; Hanwen ZHANG ; Hongting CAO ; Ling HOU ; Xin MENG ; Hong TAO ; Yan LUO ; Guanghua LI
Journal of Southern Medical University 2025;45(7):1353-1362
OBJECTIVES:
To investigate the structural changes of rat thoracic aorta and changes in expression levels of Bmal1 and cyclins in thoracic aorta endothelial cells following heat stress.
METHODS:
Twenty male SD rats were randomized equally into control group and heat stress group. After exposure to 32 ℃ for 2 weeks in the latter group, the rats were examined for histopathological changes and Bmal1 expression in the thoracic aorta using HE staining and immunohistochemistry. In the cell experiments, cultured rat thoracic aortic endothelial cells (RTAECs) were incubated at 40 ℃ for 12 h with or without prior transfection with a Bmal1-specific small interfering RNA (si-Bmal1) or a negative sequence. In both rat thoracic aorta and RTAECs, the expressions of Bmal1, the cell cycle proteins CDK1, CDK4, CDK6, and cyclin B1, and apoptosis-related proteins Bax and Bcl-2 were detected using Western blotting. TUNEL staining was used to detect cell apoptosis in rat thoracic aorta, and the changes in cell cycle distribution and apoptosis in RTAECs were analyzed with flow cytometry.
RESULTS:
Compared with the control rats, the rats exposed to heat stress showed significantly increased blood pressures and lowered heart rate with elastic fiber disruption and increased expressions of Bmal1, cyclin B1 and CDK1 in the thoracic aorta (P<0.05). In cultured RTAECs, heat stress caused significant increase of Bmal1, cyclin B1 and CDK1 protein expression levels, which were obviously lowered in cells with prior si-Bmal1 transfection. Bmal1 knockdown also inhibited heat stress-induced increase of apoptosis in RTAECs as evidenced by decreased expression of Bax and increased expression of Bcl-2.
CONCLUSIONS
Heat stress upregulates Bmal1 expression and causes alterations in expressions of cyclins to trigger apoptosis of rat thoracic aorta endothelial cells, which can be partly alleviated by suppressing Bmal1 expression.
Animals
;
ARNTL Transcription Factors/genetics*
;
Male
;
Aorta, Thoracic/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Endothelial Cells/metabolism*
;
Apoptosis
;
Cells, Cultured
;
Heat-Shock Response
;
Cyclin B1/metabolism*
;
CDC2 Protein Kinase/metabolism*
;
Cyclins/metabolism*
;
RNA, Small Interfering
;
bcl-2-Associated X Protein/metabolism*
4.An intelligent recognition method for crop density based on Faster R-CNN.
Xiuhua LI ; Qian LI ; Hanwen ZHANG ; Lu DING ; Zeping WANG
Chinese Journal of Biotechnology 2025;41(10):3828-3839
Accurately obtaining the crop quantity and density is not only crucial for the demand-based input of water and fertilizer in the field but also vital for ensuring the yield and quality of crops. Aerial photography by unmanned aerial vehicles (UAVs) can quickly acquire the distribution image information of crops over a large area. However, the accurate recognition of a single type of dense targets is a huge challenge for most recognition algorithms. Taking banana seedlings as an example in this study, we captured the images of banana plantations by UAVs from high altitudes to explore an efficient recognition method for dense targets. We proposed a strategy of "cut-recognition-stitch" and constructed a counting method based on the improved Faster R-CNN algorithm. First, the images containing highly dense targets were cropped into a large number of image tiles according to different sizes (simulating different flight altitudes), and the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm was adopted to improve the image quality. A banana seedling dataset containing 36 000 image tiles was constructed. Then, the Faster R-CNN network with optimized parameters was used to train the banana seedling recognition model. Finally, the recognition results were reversely stitched together, and a boundary deduplication algorithm was designed to correct the final counting results to reduce the repeated recognition caused by image cropping. The results show that the recognition accuracy of the Faster R-CNN with optimized parameters for banana image datasets of different sizes can reach up to 0.99 at most. The deduplication algorithm can reduce the average counting error for the original aerial images from 1.60% to 0.60%, and the average counting accuracy of banana seedlings reaches 99.4%. The proposed method effectively addresses the challenge of recognizing dense small objects in high-resolution aerial images, providing an efficient and reliable technical solution for intelligent crop density monitoring in precision agriculture.
Musa/growth & development*
;
Crops, Agricultural/growth & development*
;
Algorithms
;
Neural Networks, Computer
;
Unmanned Aerial Devices
;
Seedlings/growth & development*
;
Image Processing, Computer-Assisted/methods*
;
Photography
;
Agriculture/methods*
5.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
6.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
7.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
8.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
9.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
10.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.

Result Analysis
Print
Save
E-mail