1.Effect of lncRNA-TNFRSF13C on hypoxia-inducible factor 1alpha in periodontal cells by modulation of miR-1246
Jing BAI ; Xue ZHANG ; Yan REN ; Yuehui LI ; Xiaoyu TIAN
Chinese Journal of Tissue Engineering Research 2025;29(5):928-935
BACKGROUND:LncRNA-TNFRSF13C,an important factor in B cell development and function,is expressed in periodontal tissues of patients with periodontitis,but the specific mechanism is still unclear. OBJECTIVE:To investigate the mechanism of lncRNA-TNFRSF13C regulating miR-1246 on hypoxia-inducible factor 1α in periodontal cells. METHODS:Human periodontal ligament cells(hPDLCs)were treated with lipopolysaccharide and divided into group A(hPDLCs cell lines without transfection),group B(hPDLCs cell lines transfected with TNFRSF13C NC-siRNA),group C(hPDLCs cell lines transfected with TNFRSF13C-siRNA),group D(hPDLCs cell line transfected with miR-1246 mimics),group E(hPDLCs cell line transfected with miR-1246 siRNA),group F(hPDLCs cell line transfected with TNFRSF13C-siRNA+miR-1246 mimics),and group G(hPDLCs cell line transfected with TNFRSF13C-siRNA+miR-1246 siRNA).The relative expression of lncRNA-TNFRSF13C and miR-1246 in each group was detected by qRT-PCR.Cell counting kit-8 assay was used to detect cell viability.Apoptosis was detected by flow cytometry.Expression of hypoxia-inducible factor 1α and vascular endothelial growth factor proteins was detected by western blot.The correlation between lncRNA-TNFRSF13C and miR-1246 was analyzed by Pearson,and the targeting relationship was analyzed by dual-luciferase reporter assay. RESULTS AND CONCLUSION:There was no significant difference in human periodontal ligament cell activity,apoptosis rate and protein indexes between groups A and B(P>0.05).Compared with group B,hPDLCS cell activity in group C was increased,and apoptosis rate and the expression of hypoxia-inducible factor 1α and vascular endothelial growth factor proteins were decreased(P<0.05).Compared with group C,hPDLCS cell activity in group D was decreased,and apoptosis rate and the expression of hypoxia-inducible factor 1α and vascular endothelial growth factor proteins were increased(P<0.05).Compared with group D,the cell activity of group E was increased(P<0.05).The cell activity in group F was lower than that in group E,and the apoptosis rate was reduced in both groups E and F(P<0.05).Compared with group F,the cell activity of group G was increased,and the apoptosis rate and the expression of hypoxia-inducible factor 1α and vascular endothelial growth factor were decreased(P<0.05).LncRNA-TNFRSF13C was positively correlated with miR-1246(P<0.05).Compared with the TNFRSF13C-siRNA group,the fluorescence activity of miR-1246-wt in the TNFRSF13C-NC group was reduced(P>0.05);compared with the miR-1246-NC group,the fluorescence activities of hypoxia-inducible factor 1α-wt and vascular endothelial growth factor-wt in the miR-1246 mimics group were increased(P<0.05).To conclude,down-regulation of lncRNA-TNFRSF13C can promote the activity of periodontal cells treated with lipopolysaccharide,reduce apoptosis,and inhibit hypoxia-inducible factor 1α and vascular endothelial growth factor.The mechanism is related to the regulation of miR-1246 activity.
2.Effects of wogonin on joint inflammation in collagen-induced arthritis rats via the endoplasmic reticulum stress pathway
Yuru WANG ; Siyuan LI ; Ye XU ; Yumeng ZHANG ; Yang LIU ; Huiqin HAO
Chinese Journal of Tissue Engineering Research 2025;29(5):1026-1035
BACKGROUND:Rheumatoid arthritis is an inflammatory disease.Many studies have shown that wogonin has a good anti-inflammatory effect on rheumatoid arthritis,but its exact efficacy and specific mechanism of action remain to be clarified. OBJECTIVE:To investigate the mechanism of wogonin ameliorating joint inflammation by regulating endoplasmic reticulum stress pathway in rats with collagen-induced arthritis. METHODS:(1)At the animal level:Female Wistar rats were divided into healthy control group,arthritis model group and wogonin treatment group.Rat models of arthritis in the latter two groups were established by subcutaneous injection of bovine type Ⅱ collagen and adjuvant.In the wogonin group,wogonin was given by gavage for 28 consecutive days after modeling.During this period,the rats in each group were weighed,and arthritis score and ankle swelling were measured every 7 days.After the experiment,the pathological changes of the joint were observed,the mRNA and protein levels of endoplasmic reticulum stress pathway GRP78 and CHOP were detected by qRT-PCR,western blot,and immunohistochemistry.(2)At the cellular level,cell counting kit-8 was used to detect the cytotoxic effect of wogonin on fibroblast-like synoviocytes from rats with collagen-induced arthritis.The fibroblast-like synoviocytes induced by thapsigargin were treated with different concentrations of wogonin.The levels of interleukin-1β and tumor necrosis factor-α in the cell supernatant were detected by ELISA,and the intracellular reactive oxygen species in each group were determined by DCFH-DA probe method.The mRNA and protein levels of GRP78,IRE1α,XBP1s and CHOP were detected by qRT-PCR and western blot,respectively. RESULTS AND CONCLUSION:Compared with the healthy control group,arthritis index score and ankle swelling degree in the arthritis model group were increased(P<0.01),synovial hyperplasia,inflammatory cell infiltration,cartilage destruction and bone erosion were observed in pathological sections,and the mRNA and protein expressions of GRP78 and CHOP in the ankle were significantly increased(P<0.01),which were mainly located in synovial tissue and articular surface.Compared with the arthritis model group,the arthritis index score and ankle swelling degree in the wogonin treatment group were decreased(P<0.05),synovial hyperplasia and the number of inflammatory cells were decreased,cartilage destruction and bone erosion were alleviated,the mRNA and protein expression levels of GRP78 and CHOP in the ankle were decreased(P<0.05),particularly in synovial tissue and on the articular surface.There was no significant difference in body mass among the three groups(P>0.05).In the cell experiment,200 μmol/L wogonin significantly reduced the survival rate of fibroblast-like synoviocytes(P<0.01).Compared with the blank control group,the levels of interleukin-1β,tumor necrosis factor-α,content of reactive oxygen species,and mRNA and protein expression of GRP78,IRE1α,XBP1s,and CHOP in the thapsigargin group were significantly increased(P<0.05);compared with the thapsigargin group,50 and 100 μmol/L wogonin significantly reduced the levels of interleukin-1β and tumor necrosis factor-α in the cell supernatant(P<0.05,P<0.01),and 100 μmol/L wogonin significantly reduced the content of reactive oxygen species(P<0.01)and down-regulated the mRNA and protein expression levels of GRP78,IRE1α,XBP1s and CHOP(all P<0.05).These results suggest that wogonin can effectively alleviate joint inflammatory responses in rats with collagen-induced arthritis,and the endoplasmic reticulum stress pathway may be the key target of its intervention.
3.Physical activity and cognition in older adults:research hotspot and topic evolution
Huijun LI ; Huangyan LI ; Yeting ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(5):1073-1080
BACKGROUND:In recent years,there has been an explosion of research in the field of physical activity and cognition of older adults,and the research hotspots and topics in this field are constantly evolving.However,a comprehensive review of the literature in this field is lacking. OBJECTIVE:To explore the current international research hotspots and contents in the field of physical activity and cognition of older adults using bibliometrics. METHODS:The Web of Science Core Collection Database,including SCI-EXPANDED,SSCI,A&HCI,CPCI-S,CPCI-SSH,BKCI-S,BKCI-SSH,ESCI,CCR-EXPANDED,IC,etc.,was searched for relevant literature in English.CiteSpace software was used to visualize and analyze 2593 documents collected in the Web of Science database. RESULTS AND CONCLUSION:The evolution of the topics of physical activity and cognition of older adults includes five stages:research on companion robots for older adults,research on the risk of diseases such as dementia,research on cognitive ability and its related ability,research on the relationship between physical activity level and cognitive ability in older adults,and research on different intervention methods and their mechanisms.The research in this field tends to be diversified.On the basis of the research on diseases and cognitive risk reduction,more attention has been paid to the effects of different physical activity modalities on cognition and the related mechanisms,which is the current research hotspot and will be the main research trend in the future.
4.Effect of transcranial magneto-acousto-electrical stimulation on the plasticity of the prefrontal cortex network in mice
Shuai ZHANG ; Zichun LI ; Yihao XU ; Xiaofeng XIE ; Zhongsheng GUO ; Qingyang ZHAO
Chinese Journal of Tissue Engineering Research 2025;29(6):1108-1117
BACKGROUND:Transcranial magneto-acoustic-electrical stimulation is a novel non-invasive neural regulation technique that utilizes the induced electric field generated by the coupling effect of ultrasound and static magnetic field to regulate the discharge activity of the nervous system.However,the mechanism by which it affects synaptic plasticity in the brain is still not enough. OBJECTIVE:To explore the effect of transcranial magneto-acoustic-electrical stimulation intensity on synaptic plasticity of the prefrontal cortex neural network in mice. METHODS:(1)Animal experiment:Twenty-four C57 mice were equally and randomly divided into four groups:the control group receiving pseudo-stimulation,the 6.35 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,6.35 W/cm2,the 17.36 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,17.36 W/cm2,and the 56.25 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,56.25 W/cm2.The local field potential signals and behavioral correctness were recorded during the execution of T-maze in mice.(2)Modeling and simulation experiments:A neural network model of the prefrontal cortex in mice stimulated by transcranial magneto-acoustic-electrical stimulation was constructed to compare the structural connectivity characteristics of the neural network under different stimulation intensities. RESULTS AND CONCLUSION:Transcranial magneto-acoustic-electrical stimulation could effectively shorten the behavior learning time,improve the working memory ability of mice(P<0.05),and continue to stimulate the frontal lobe of mice after learning behavior.There was no significant difference in the accuracy of the T-maze behavioral experiment among the experimental groups(P>0.1).Analysis of local field potential signals in the frontal lobe of mice revealed that transcranial magneto-acoustic-electrical stimulation promoted energy enhancement of β and γ rhythms.As the stimulation intensity increased,there was an asynchronous decrease in β and γ rhythms.Through β-γ phase amplitude coupling,it was found that stimuli could enhance the neural network's ability to adapt to new information and task requirements.Modeling and simulation experiments found that stimulation could enhance the discharge level of the neural network,increase the long-term synaptic weight level,and decrease the short-term synaptic weight level only when the stimulation intensity was high.To conclude,there is a complex nonlinear relationship between different stimulus intensities and the functional structure of neural networks.This neural regulation technique may provide new possibilities for the treatment of related neurological diseases such as synaptic dysfunction and neural network abnormalities.
5.Troxerutin modulates nuclear factor-kappaB signaling pathway to inhibit brain injury and neuronal apoptosis in cerebral infarction rats
Zhezhe LIU ; Meiqing YU ; Tingting WANG ; Min ZHANG ; Baiyan LI
Chinese Journal of Tissue Engineering Research 2025;29(6):1137-1143
BACKGROUND:Troxerutin has been found to have a significant ameliorative effect on brain disorders,but there are fewer studies on the effects of troxerutin on the treatment of cerebral infarction and on neuronal cells. OBJECTIVE:To investigate the mechanism by which troxerutin regulates nuclear factor-κB signaling pathway to reduce brain injury and neuronal apoptosis in cerebral infarction rats. METHODS:Fifty clean grade rats were randomized into healthy group,model group,and troxerutin+nuclear factor-κB agonist group,troxerutin group,and nuclear factor-κB inhibitor group.Except for the healthy group,all other groups were used to establish a rat model of cerebral infarction by arterial ligation.The healthy and model groups were treated once a day with an equal amount of physiological saline by gavage.The troxerutin+nuclear factor-κB agonist group was intervened with 72 mg/kg troxerutin by gavage+20 mg/kg RANK intraperitoneally.The troxerutin group was treated with 72 mg/kg troxerutin by gavage.The nuclear factor κB inhibitor group was intervened intraperitoneally with 120 mg/kg nuclear factor κB inhibitor pyrrolidine disulfiram.Administration in each group was given once a day for 30 continuous days.Zea-longa was used to detect neurological damage in rats,hematoxylin-eosin staining was used to observe pathological changes,TUNEL was used to detect neuronal apoptosis,and immunoblotting and PCR were used to detect the expression of nuclear factor-κB p65 and nuclear factor-κB p50 at protein and mRNA levels,respectively. RESULTS AND CONCLUSION:Compared with the healthy group,the neurological function score,neuronal apoptosis rate,nuclear factor-κB p65,nuclear factor-κB p50 mRNA and protein expression levels were elevated in the model group(P<0.05).Compared with the model group,the neurological function score,neuronal apoptosis rate,nuclear factor-κB p65 and nuclear factor-κB p50 mRNA and protein expression levels were decreased in the troxerutin+nuclear factor-κB agonist group(P<0.05).Compared with the troxerutin+nuclear factor-κB agonist group,the neurological function score,neuronal apoptosis rate,nuclear factor-κB p65 and nuclear factor-κB p50 mRNA and protein expression levels were reduced in the troxerutin group and nuclear factor-κB inhibitor group(P<0.05).In addition,there was no difference between the troxerutin group and the nuclear factor-κB inhibitor group(P>0.05).In the model group,there was a large number of cytoplasmic vacuolation,obvious edema and necrosis,and a large number of inflammatory cell infiltrations.In the troxerutin+nuclear factor-κB agonist,the swelling of brain tissue was reduced,and reticulate structures and condensed cells were reduced,still with some edema.In the troxerutin group and nuclear factor-κB inhibitor group,brain tissue swelling,neuronal edema degeneration,cytoplasmic vacuolation and neuronal nucleus consolidation were reduced,and the inflammatory cell infiltration was significantly decreased.To conclude,troxrutin can reduce the expression of neurological impairment,inhibit neuronal apoptosis and improve the pathological injury of brain tissue in rats with cerebral infarction,and its mechanism of action may be related to the modulation of nuclear factor-κB expression and related signaling pathways.
6.Cistanoside A mediates p38/MAPK pathway to inhibit osteoclast activity
Yueyao LI ; Min ZHANG ; Jiaju YANG
Chinese Journal of Tissue Engineering Research 2025;29(6):1144-1151
BACKGROUND:Cistanoside A has the effects of anti-inflammation,antioxidation,antioxidation,reducing renal damage and anti-osteoporosis,but its effect on osteoclast differentiation,function and its underlying molecular mechanisms remain unclear. OBJECTIVE:To investigate the effect of Cistanoside A on osteoclast differentiation and bone resorption induced by receptor activator of nuclear factor kappa-B ligand(RANKL)in vitro and its mechanism. METHODS:Bone marrow macrophages were obtained from the femur and tibia of 4-6-week-old C57BL/6 mice.The cytotoxic effect of Cistanoside A(5,10,20,40,80,and 160 μmol/L)on bone marrow macrophage viability was examined using the cell counting kit-8 assay kit.Tartrate-resistant acid phosphatase staining was performed to observe the effect of different concentrations of Cistanoside A on osteoblast differentiation and its effective intervention concentration was determined.There was positive control group,Cistanoside A low,medium,and high dose groups(40,80,and 160 μmol/L).After cell attachment,50 ng/mL RANKL was added to induce osteoblast differentiation,and the corresponding dose of Cistanoside A was added to the Cistanoside A low,medium,and high dose groups,respectively.F-actin ring and 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride staining were performed to detect the effects of Cistanoside A on the formation of osteoclasts.Toluidine blue staining of bone abrasion slices was used to observe the effects of Cistanoside A on bone resorption function of osteoclasts.The expression of upstream and downstream proteins of the JNK/MAPK pathway was detected by Western blot.The expression of genes related to osteoclast differentiation and bone resorption function such as tartrate-resistant acid phosphatase,DC-STAMP,Nfatc-1,Ctsk and c-Fos was detected by RT-qPCR. RESULTS AND CONCLUSION:Tartrate-resistant acid phosphatase staining,F-actin ring staining and resorption pit assay showed that Cistanoside A significantly inhibited RANKL-induced osteoclast differentiation and bone resorption in a dose-dependent manner compared with the positive control group.The results of RT-qPCR showed that compared with the positive control group,both high and low dose groups of Cistanoside A could significantly downregulate the mRNA expression of tartrate-resistant acid phosphatase,DC-STAMP,Nfatc-1,Ctsk and c-Fos in a dose-dependent manner.The results of western blot assay showed that the high dose group of Cistanoside A significantly inhibited the expression of p-JNK protein at 10,20,30 and 60 minutes of intervention;compared with the positive control group,Cistanoside A significantly inhibited the expression of Nfatc1 and c-Fos proteins in a dose-dependent manner.To conclude,Cistanoside A could inhibit the formation and bone resorption of osteoclasts by reducing the level of p-JNK protein,inhibiting the activation of MAPK pathway and the expression of key genes in osteoclasts.
7.Epidural fibrous scar formation in rabbits following autologous ligamentum flavum intervention
Debao ZHANG ; Peng WANG ; Kun LI ; Shaojie ZHANG ; Zhijun LI ; Shuwen LI ; Yimin WU
Chinese Journal of Tissue Engineering Research 2025;29(6):1168-1175
BACKGROUND:It has been proved clinically that adhesion of fibrous scar with the dura mater or nerve root after lumbar operation is an important factor for postoperative symptoms,such as postoperative pain and numbness. OBJECTIVE:To verify the inhibitory effect of autologous ligamentum flavum on the formation of epidural fibrous scar after lumbar surgery and explore the possible molecular biological mechanism. METHODS:Forty-eight Japanese white rabbits(6-8 months old)were randomly divided into three groups:a ligamentum flavum preservation group,a ligamentum flavum non-preservation group,and an autologous fat reposition group.A lumbar laminectomy model was established in all the three groups of rabbits,and rabbit epidural tissues were collected at 3 and 6 weeks after modeling.Hematoxylin-eosin staining was used to observe histological changes and the number and density of fibroblasts,VG staining was used to observe the percentage of collagen fiber area,and immunohistochemistry was used to observe the expression of transforming growth factor β1 and Smad3 proteins. RESULTS AND CONCLUSION:Hematoxylin-eosin staining results revealed that fibroblasts in the ligamentum flavum preservation group were few and loosely arranged,while the cells in the ligamentum flavum non-preservation and autologous fat reposition groups were more numerous and closely arranged.The number density of fibroblasts in the ligamentum flavum preservation group was lower than that in the ligamentum flavum non-preservation and autologous fat reposition groups at 3 and 6 weeks after surgery(P<0.05);however,there was no significant difference between the latter two groups.VG staining results showed that the collagen fibers in the ligamentum flavum preservation group were sparse and distributed unevenly,while a lot of red collagen fibers were gathered in the ligamentum flavum non-preservation and autologous fat reposition groups.The area percentage of collagen fibers in the ligamentum flavum preservation group was lower than that in the ligamentum flavum non-preservation and autologous fat reposition groups at 3 and 6 weeks after surgery(P<0.05),but there was no significant difference between the latter two groups.The results of immunohistochemistry showed that the degree of positive staining of retained histone the ligamentum flavum preservation group was significantly lower than that of the other two groups.The absorbance value of transforming growth factor β1 and Smad3 in the ligamentum flavum preservation group was significantly lower than that in the other two groups at 3 and 6 weeks after surgery(P<0.05),but there was no significant difference between the latter two groups.To conclude,there are different degrees of epidural fibrous scar formation after lumbar surgery.If the ligamentum flavum is preserved,it can help to reduce the number of epidural fibroblasts as well as the formation of collagen fibers,thus reducing the adhesion of the fibrous scar tissue to the dural sac and nerve root.The mechanism is not only a purely mechanical blockade,but also to reduce the formation of epidural fibrous scar by interfering with the transforming growth factor β1/Smad3 signaling pathway.
8.SR9009 combined with indolepropionic acid alleviates inflammation in C2C12 myoblasts through the nuclear factor-kappa B signaling pathway
Huihui JI ; Xu JIANG ; Zhimin ZHANG ; Yunhong XING ; Liangliang WANG ; Na LI ; Yuting SONG ; Xuguang LUO ; Huilin CUI ; Ximei CAO
Chinese Journal of Tissue Engineering Research 2025;29(6):1220-1229
BACKGROUND:Rev-erbα is involved in the regulation of inflammation,but pharmacological activation of Rev-erbα increases the risk for cardiovascular diseases.To reduce the relevant risk,an exploration on SR9009,a Rev-erbα agonist,combined with other drugs to relieve inflammation in skeletal myoblasts was conducted,laying the theoretical foundation for the treatment of inflammation-associated skeletal muscle atrophy. OBJECTIVE:To investigate the relationship of SR9009,indolepropionic acid and nuclear factor-κB signaling pathways in lipopolysaccharide-induced C2C12 myoblasts. METHODS:(1)C2C12 myoblasts were induced to differentiate in the presence of lipopolysaccharide(1 μg/mL).RNA-seq and KEGG pathway analysis were used to study signaling pathways.(2)C2C12 myoblast viability was assessed using the cell counting kit-8 assay to determine optimal concentrations of indolepropionic acid.Subsequently,cells were categorized into control group,lipopolysaccharide(1 μg/mL)group,SR9009(10 μmol/L)+lipopolysaccharide group,indolepropionic acid(80μmol/L)+lipopolysaccharide group,and SR9009+indolepropionic acid+lipopolysaccharide group.ELISA was employed to measure protein expression levels of interleukin-6 in the cultured supernatant.Real-time quantitative PCR were employed to measure mRNA expression levels of interleukin-6,tumor necrosis factor α,TLR4 and CD14.Western blot assay were employed to measure protein expression levels of NF-κB p65 and p-NF-κB p65.(3)After Rev-erbα was knocked down by siRNA,knockdown efficiency was assessed by RT-qPCR.And mRNA levels of interleukin-6 and tumor necrosis factor α were also measured. RESULTS AND CONCLUSION:Compared with the blank control group,lipopolysaccharide time-dependently inhibited myofibroblast fusion to form myotubes,the mRNA expression levels of interleukin-6 and tumor necrosis factor α were elevated,and the level of interleukin-6 in the cell supernatant was significantly increased.The results of KEGG pathway showed that the nuclear factor-κB signaling pathway was activated by lipopolysaccharide.Indolepropionic acid exhibited significant suppression of C2C12 myoblasts viability when its concentration exceeded 80 μmol/L.Indolepropionic acid and SR9009 inhibited the activation of NF-κB signaling pathway,thereby played an anti-inflammatory role,and suppressed the mRNA expression levels of interleukin-6,tumor necrosis factor α,TLR4 and CD14.Compared with the lipopolysaccharide group,the ratio of p-NF-κB p65/NF-κB p65 protein expression were downregulated.SR9009 combined with indolepropionic acid notably reduced lipopolysaccharide-induced inflammation,further downregulated the mRNA expression levels of interleukin-6,tumor necrosis factor α,TLR4 and CD14.The ratio of p-NF-κB p65/NF-κB p65 protein expression was significantly lower than that in the SR9009+lipopolysaccharide group or indolepropionic acid+lipopolysaccharide group.Rev-erbα increases time-dependently with lipopolysaccharide induction.The knockdown efficiency of Rev-erbα by siRNA reached over 58%,and lipopolysaccharide was added after Rev-erbα was successfully knocked down.Compared with the lipopolysaccharide group,the mRNA expression levels of interleukin-6 and tumor necrosis factor α were significantly up-regulated.These results conclude that Rev-erbα may act as a promising pharmacological target to reduce inflammation.SR9009 targeted activation of Rev-erbα combined with indolepropionic acid significantly inhibits the nuclear factor-κB signaling pathway and attenuates the inflammatory response of C2C12 myofibroblasts.Moreover,the combined anti-inflammatory effect is superior to that of the intervention alone.
9.Promoting myogenesis based on the SphK1/S1P/S1PR2 signaling pathway:a new perspective on improving skeletal muscle health through exercise
Wenhua ZHANG ; Xun LI ; Weichao ZHANG ; Xinying LI ; Guoao MA ; Xiaoqiang WANG
Chinese Journal of Tissue Engineering Research 2025;29(6):1265-1275
BACKGROUND:In recent years,improving the health of skeletal muscles through exercise has become an important research concern for scholars.Appropriate exercise has a positive effect on skeletal muscles.Among them,how to activate the sphingosine kinase1(SphK1)/sphingosine-1-phase(S1P)/sphingosine-1-phase receptor2(S1PR2)signaling pathway during exercise so as to improve the health of skeletal muscles is receiving attention from researchers. OBJECTIVE:To investigate how exercise improves the health of skeletal muscles through the SphK1/S1P/S1PR2 signaling pathway,and to explore new methods for treating related muscle diseases in order to improve human skeletal muscle health. METHODS:The first author searched for relevant literature from the establishment of the database to the present in the Web of Science,PubMed,CNKI,WanFang,and VIP databases.The search terms were"signaling pathway,SphK1,S1P,S1PR2,skeletal muscle,satellite cell,myogenesis,exercise"in Chinese and English.Finally,69 articles were included for review and analysis. RESULTS AND CONCLUSION:The SphK1/S1P/S1PR2 signaling pathway is a complex regulatory network that triggers downstream signal transduction processes by SphK1 to catalyze the interaction between S1P and receptors such as S1PR2,thereby regulating multiple biological functions of cells,tissues,organs,and systems.The SphK1/S1P/S1PR2 signaling pathway can regulate satellite cell proliferation and myoblast differentiation,improving myogenesis.The physiological basis of the SphK1/S1P/S1PR2 signaling pathway and the potential impact of exercise on it were analyzed through literature research.Acute aerobic exercise can increase the expression of SphK1 in skeletal muscle.Both human and animal studies have confirmed that acute and long-term exercise can increase the expression of S1P in skeletal muscle.In addition,studies have shown that long-term resistance exercise can increase the expression of S1PR2 in skeletal muscle.Some experimental results indicate that acute and long-term exercise have no significant effect on muscle or blood S1P levels,and the reason for different results may be due to different research subjects,methods,intensities,and frequencies selected,while the specific mechanism is not yet clear.Research suggests that exercise can promote the expression of the SphK1/S1P/S1PR2 signaling pathway in skeletal muscle and regulate downstream related signaling pathways.Research on this signaling pathway may provide new strategies and methods for the treatment of skeletal muscle diseases,thereby improving skeletal muscle health.In the future,we should deepen the research on the association between SphK1/S1P/S1PR2 signaling pathway and skeletal muscle health,further reveal its regulatory relationship with satellite cells and myoblasts as well as its interactions with the upstream and downstream pathways,explore its clinical application value,take into account the changes of this pathway when formulating the rehabilitation program,explore the specific mechanisms by which different types of exercise affect the SphK1/S1P/S1PR2 signaling pathway in skeletal muscles,and use the SphK1/S1P/S1PR2 signaling pathway as a potential therapeutic target for diseases.Further development and application of human muscle models should be developed to improve research depth and accuracy.
10.Gut microbiota and osteoporotic fractures
Wensheng ZHAO ; Xiaolin LI ; Changhua PENG ; Jia DENG ; Hao SHENG ; Hongwei CHEN ; Chaoju ZHANG ; Chuan HE
Chinese Journal of Tissue Engineering Research 2025;29(6):1296-1304
BACKGROUND:Osteoporotic fracture is the most serious complication of osteoporosis.Previous studies have demonstrated that gut microbiota has a regulatory effect on skeletal tissue and that gut microbiota has an important relationship with osteoporotic fracture,but the causal relationship between the two is unclear. OBJECTIVE:To explore the causal relationship between gut microbiota and osteoporotic fractures using Mendelian randomization method. METHODS:The genome-wide association study(GWAS)datasets of gut microbiota and osteoporotic fracture were obtained from the IEU Open GWAS database and the Finnish database R9,respectively.Using gut microbiota as the exposure factor and osteoporotic fracture as the outcome variable,Mendelian randomization analyses with random-effects inverse variance weighted,MR-Egger regression,weighted median,simple model,and weighted model methods were performed to assess whether there is a causal relationship between gut microbiota and osteoporotic fracture.Sensitivity analyses were performed to test the reliability and robustness of the results.Reverse Mendelian randomization analyses were performed to further validate the causal relationship identified in the forward Mendelian randomization analyses. RESULTS AND CONCLUSION:The results of this Mendelian randomization analysis indicated a causal relationship between gut microbiota and osteoporotic fracture.Elevated abundance of Actinomycetales[odds ratio(OR)=1.562,95%confidence interval(CI):1.027-2.375,P=0.037),Actinomycetaceae(OR=1.561,95%CI:1.027-2.374,P=0.037),Actinomyces(OR=1.544,95%CI:1.130-2.110,P=0.006),Butyricicoccus(OR=1.781,95%CI:1.194-2.657,P=0.005),Coprococcus 2(OR=1.550,95%CI:1.068-2.251,P=0.021),Family ⅩⅢ UCG-001(OR=1.473,95%CI:1.001-2.168,P=0.049),Methanobrevibacter(OR=1.274,95%CI:1.001-1.621,P=0.049),and Roseburia(OR=1.429,95%CI:1.015-2.013,P=0.041)would increase the risk of osteoporotic fractures in patients.Elevated abundance of Bacteroidia(OR=0.660,95%CI:0.455-0.959,P=0.029),Bacteroidales(OR=0.660,95%CI:0.455-0.959,P=0.029),Christensenellacea(OR=0.725,95%CI:0.529-0.995,P=0.047),Ruminococcaceae(OR=0.643,95%CI:0.443-0.933,P=0.020),Enterorhabdus(OR=0.558,95%CI:0.395-0.788,P=0.001),Eubacterium rectale group(OR=0.631,95%CI:0.435-0.916,P=0.016),Lachnospiraceae UCG008(OR=0.738,95%CI:0.546-0.998,P=0.048),and Ruminiclostridium 9(OR=0.492,95%CI:0.324-0.746,P=0.001)would reduce the risk of osteoporotic fractures in patients.We identified 16 gut microbiota associated with osteoporotic fracture by the Mendelian randomization method.That is,using gut microbiota as the exposure factor and osteoporotic fracture as the outcome variable,eight gut microbiota showed positive causal associations with osteoporotic fracture and another eight gut microbiota showed negative causal associations with osteoporotic fracture.The results of this study not only identify new biomarkers for the early prediction of osteoporotic fracture and potential therapeutic targets in clinical practice,but also provide an experimental basis and theoretical basis for the study of improving the occurrence and prognosis of osteoporotic fracture through gut microbiota in bone tissue engineering.

Result Analysis
Print
Save
E-mail