1.Expression and Biological Function of SPOP in Acute Myeloid Leukemia.
Xue-Ying WAN ; Jing XU ; Xiao-Li LIU ; Hong-Wei WANG
Journal of Experimental Hematology 2025;33(1):32-38
OBJECTIVE:
To study the expression of SPOP in patients with acute myeloid leukemia (AML) and its effect on proliferation, apoptosis and cycle of AML cells.
METHODS:
RT-qPCR was used to detect the expression of SPOP mRNA in bone marrow samples of patients with newly diagnosed AML and normal controls. The stable overexpression of SPOP in AML cell lines THP-1 and U937 were constructed by liposome transfection. The effect of SPOP on cell proliferation was detected by CCK-8, and the effect of SPOP on apoptosis and cell cycle was detected by flow cytometry. The expressions of anti-apoptotic protein Bcl-2 and apoptotic protein Bax, Caspase3 were detected by Western blot.
RESULTS:
The median expression level of SPOP mRNA in normal control group was 0.993 1(0.6303, 1.433), while that in AML group was 0.522 1(0.242 2, 0.723 7). The expression level of SPOP in AML group was significantly lower than that in normal control group ( P < 0.001). After the overexpression of SPOP, the proportion of apoptotic cells in the U937 overexpression group and THP-1 overexpression group was 10.9%±0.3% and 4.6%±015%, which were higher than 8.9%±0.3% and 3.0%±0.30% in the Empty Vector group, respectively (both P < 0.05). The expression of Caspase3 in U937 overexpression group and THP-1 overexpression group was 1.154±0.086 and 1.2±0.077, which were higher than 1 in Empty Vector group, respectively (both P < 0.05). The ratio of Bax/Bcl-2 in U937 overexpression group and THP-1 overexpression group was 1.328±0.057 and 1.669±0.15, which were higher than 1 in Empty Vector group, respectively (both P < 0.05). In the cell proliferation experiment, the number of cells in the U937 overexpression group and THP-1 overexpression group were both slightly lower than those in the Empty Vector group, but the differences were not statistically significant (P >0.05). In the cell cycle experiment, the proportion of G1 cells in the U937 overexpression group and THP-1 overexpression group were both slightly higher than those in the Empty Vector group, but the differences were not statistically significant (P >0.05).
CONCLUSION
SPOP can promote the apoptosis of leukemic cells, and its mechanism may be related to down-regulation of Bcl-2 expression and up-regulation of Bax and Caspase3 expression.
Humans
;
Leukemia, Myeloid, Acute/pathology*
;
Apoptosis
;
Repressor Proteins/genetics*
;
Cell Proliferation
;
Nuclear Proteins/genetics*
;
Cell Cycle
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
U937 Cells
;
Cell Line, Tumor
;
RNA, Messenger/genetics*
2.Effects of Down-regulation of NCL Expression on the Biological Behavior of Acute Myeloid Leukemia Kasumi-1 Cells.
Hui-Li LIU ; Wen-Xin XU ; Yang-Yan CAI ; Hong-Mei LI
Journal of Experimental Hematology 2025;33(5):1312-1317
OBJECTIVE:
To investigate the role of nucleolin (NCL) in acute myeloid leukemia (AML) Kasumi-1 cells and its underlying mechanism.
METHODS:
The Kasumi-1 cells were infected with lentivirus carrying shRNA to downregulate NCL expression. Cell proliferation was detected by CCK-8 assay, and cell apoptosis and cell cycle were determined by flow cytometry. Transcriptome next-generation sequencing (NGS) was performed to predict associated signaling pathways, the expression levels of related genes were measured by RT-PCR.
RESULTS:
Down-regulation of NCL expression significantly inhibited the proliferation of Kasumi-1 cells (P <0.01) and markedly increased the apoptosis rate (P <0.001). Cell cycle analysis showed significant changes in the distribution of cells in the G1 and S phases after NCL knockdown (P <0.05), while no significant difference was observed in the G2 phase (P >0.05). Transcriptome sequencing analysis demonstrated that differentially expressed genes in Kasumi-1 cells with low expression of NCL were primarily enriched in key signaling pathways, including ribosome, spliceosome, RNA transport, cell cycle, and amino acid biosynthesis. qPCR validation showed that the expression of BAX, CASP3, CYCS, PMAIP1, TP53 , and CDKN1A was significantly upregulated after NCL downregulation (P <0.05), with CDKN1A exhibiting the most pronounced difference.
CONCLUSION
NCL plays a critical role in regulating the proliferation, apoptosis, and cell cycle progression of Kasumi-1 cells. The mechanism likely involves suppressing cell cycle progression through activation of the TP53-CDKN1A pathway and promoting apoptosis by upregulating apoptosis-related genes.
Humans
;
Leukemia, Myeloid, Acute/pathology*
;
Down-Regulation
;
Cell Proliferation
;
Apoptosis
;
RNA-Binding Proteins/genetics*
;
Nucleolin
;
Cell Line, Tumor
;
Phosphoproteins/metabolism*
;
Cell Cycle
;
Signal Transduction
;
RNA, Small Interfering
3.The impact of mitochondrial transfer on leukemia progression.
Wen-Jia FANG ; Biao ZHANG ; Tao CHENG ; Hui CHENG
Acta Physiologica Sinica 2024;76(6):943-952
The objective of the present study was to investigate the role and mechanism of bone marrow microenvironmental cells in regulating the mitochondrial mass of leukemia cells, and to uncover the mechanism of leukemia progression at the metabolic level. A mouse model of acute myeloid leukemia (AML) induced by the overexpression of the MLL-AF9 (MA9) fusion protein was established, and the bone marrow cells of AML mice were transplanted into mitochondrial fluorescence reporter mice expressing the Dendra2 protein (mito-Dendra2 mice). The proportion of Dendra2+ cells in bone marrow leukemia cells at different stages of AML was quantified by flow cytometry. The effects of transferred mitochondria on leukemia cells were studied by fluorescence-activated cell sorting (FACS), followed by functional experiments and bulk RNA sequencing. Finally, components within the bone marrow niche, such as mesenchymal stromal cells (MSCs) and endothelial cells (ECs), were co-cultured with leukemia cells in vitro. The proportion of leukemia cells that underwent mitochondrial transfer and the apoptosis level of leukemia cells were then detected by flow cytometry. The results showed that mitochondria from bone marrow cells were transferred to leukemia cells in the AML mouse model, and the proportion of mitochondrial transfer decreased with AML progression. The proportion of mitochondria transferred to leukemia stem cells (LSCs) was lower than that of mature AML cells. In AML cells receiving Dendra2+ mitochondria, there was a significant increase in the levels of intracellular reactive oxygen species (ROS) and apoptosis, while the levels of protein translation and their colony-forming capacities were decreased. The transplantation of Dendra2+ AML cells resulted in an extension of the survival of mice. RNA sequencing analysis demonstrated a significant downregulation of pathways related to translation, aerobic respiration and mitochondrial organization in AML cells that had received mitochondria. In vitro co-culture experiments indicated that MSCs within the bone marrow niche tended to transfer their mitochondria to leukemia cells and promoted the apoptosis of leukemia cells. These results indicate that in the MA9-induced AML mouse model, bone marrow niche cells can transfer mitochondria to leukemia cells, resulting in a reduction in the overall survival and function of the leukemia cells. Mitochondrial transfer in the bone marrow microenvironment may serve as a self-defensive mechanism of the host bone marrow niche cells, inhibiting the progression of AML.
Animals
;
Mice
;
Mitochondria/metabolism*
;
Disease Progression
;
Leukemia, Myeloid, Acute/genetics*
;
Apoptosis
;
Mesenchymal Stem Cells/metabolism*
;
Bone Marrow Cells/metabolism*
;
Humans
;
Tumor Microenvironment
;
Mice, Inbred C57BL
4.miR-181b-5p promotes cell proliferation and induces apoptosis in human acute myeloid leukemia by targeting PAX9.
Bin LI ; Qianshan TAO ; Xueying HU ; Tan LI ; Yangyi BAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1074-1082
Objective To investigate the effects of miR-181b-5p on cells proliferation and apoptosis in acute myeloid leukemia (AML) by targeting paired box 9 (PAX9). Methods The relationship between expression level of PAX9 and prognosis in AML patients was analyzed by gene expression profiling interactive analysis (GEPIA) database and The Cancer Genome Atlas (TCGA) database. Kasumi-1 and AML5 cells were transfected with empty vector (Vector group) or PAX9 (PAX9 group). The proliferation activity was detected by CCK-8 assay, and cells cycle and apoptosis were detected by flow cytometry. Expressions of cyclin-dependent kinase 2 (CDK2), cyclin B1 (CCNB1), B-cell lymphoma 2 (Bcl2) and Bcl2-associated X protein (BAX) were detected by Western blot analysis. The targeted microRNA (miRNA) by PAX9 was predicted by bioinformatics analysis, and the targeted effect was verified by luciferase reporter assay. The level of PAX9 mRNA was detected by real-time quantitative PCR, and expression of PAX9 protein was detected by Western blot analysis. Kasumi-1 and AML5 cells were transfected with miR-NC (miR-NC group) or miR-181b-5p (miR-181b-5p group). The cells were further transfected with PAX9 (miR-181b-5p combined with PAX9 group) in miR-181b-5p group. The proliferation, cycle and apoptosis of cells were detected by the above methods.Results GEPIA and TCGA databases showed that the expression of PAX9 was down-regulated in AML patients, which was correlated with poor prognosis. In Kasumi-1 and AML5 cells, compared with Vector group, proliferation activity of cells, percentage of cells in S phase, and expressions of CDK2, CCNB1 and Bcl2 proteins were decreased, while percentage of cells in G0/G1 phase, apoptosis rate and the expression of BAX protein were increased in PAX9 group. It was confirmed by double luciferase reporter assay that PAX9 was the target gene of miR-181b-5p. Compared with miR-NC group, proliferation activity of cells, percentage of cells in S phase, and expressions of CDK2, CCNB1 and Bcl2 proteins were increased, while percentage of cells in G0/G1 phase, apoptosis rate and the expression of BAX protein were decreased in miR-181b-5p group. Compared with miR-181b-5p group, proliferation activity of cells, percentage of cells in S phase, and expressions of CDK2, CCNB1 and Bcl2 proteins were decreased, while percentage of cells in G0/G1 phase, apoptosis rate and the expression of BAX protein were increased in miR-181b-5p combined with PAX9 group. Conclusion The miR-181b-5p can promote the proliferation of AML cells and delay apoptosis by inhibiting PAX9.
Humans
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Leukemia, Myeloid, Acute/pathology*
;
Luciferases
;
MicroRNAs/metabolism*
;
PAX9 Transcription Factor/genetics*
5.Effect of Long Non-Coding RNA LINC01268 on the Malignant Biological Behaviors of Acute Myeloid Leukemia Cells.
Journal of Experimental Hematology 2023;31(6):1608-1616
OBJECTIVE:
To investigate the effect of long non-coding RNA LINC01268 on apoptosis of acute myeloid leukemia (AML) cells and related mechanisms.
METHODS:
The expression levels of LINC01268 and miR-217 in peripheral blood samples from AML patients and AML cell lines HL-60 and KG-1 were detected by qRT-PCR. HL-60 cells were divided into pcDNA3.1-NC, pcDNA3.1-LINC01268, si-NC, si-LINC01268, miR-NC, miR-217 mimics, si-LINC01268 + inhibitor-NC and si-LINC01268+ miR-217 inhibitor groups. The mRNA expressions of LINC01268 and miR-217 were detected by qRT-PCR. The targeting relationship between LINC01268 and miR-217 was detected by dual-luciferase reporter assay. Cell viability was detected by CCK-8 assay. Cell cycle distribution and apoptosis were detected by flow cytometry. The expression of cell cycle and apoptosis-related proteins p21, Bcl-2, Bax, caspase-3 and PI3K/AKT signaling pathway-related proteins were detected by Western blot.
RESULTS:
The expression of LINC01268 in peripheral blood samples of AML patients and AML cell lines HL-60 and KG-1 was increased (P < 0.05), and the expression of miR-217 was decreased (P < 0.05). Compared with si-NC group and miR-NC group, the viability of HL-60 cells was decreased in si-LINC01268 group and miR-217 mimics group (P < 0.05), the proportion of cells in G1 phase and apoptosis rate were increased (P < 0.05), the protein expression levels of p21, Bax and caspase-3 were increased (P < 0.05), while the protein expression level of Bcl-2 was decreased (P < 0.05). LINC01268 targeted and negatively regulated the expression of miR-217, and inhibiting the expression of miR-217 partially reversed the effects of LINC01268 interference on the viability, cell cycle and apoptosis of HL-60 cells. Interference with LINC01268 could inhibit the activity of PI3K/AKT signaling pathway. Inhibiting the expression of miR-217 could partially reverse the inhibition of LINC01268 interference on PI3K/AKT signaling pathway.
CONCLUSION
LINC01268 is highly expressed and miR-217 is lowly expressed in AML cells. LINC01268 can promote the activity of PI3K/AKT signaling pathway, increase the survival rate and inhibit the apoptosis of AML cells by targeting miR-217 expression.
Humans
;
Apoptosis
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3
;
Cell Line, Tumor
;
Cell Proliferation
;
Leukemia, Myeloid, Acute/metabolism*
;
MicroRNAs/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Long Noncoding/genetics*
6.Research Progress of m6A Demethylase FTO and Its Inhibitors in Acute Myeloid Leukemia --Review.
Ze-Hao FANG ; Su-Ying ZHENG ; Wei-Ying FENG
Journal of Experimental Hematology 2023;31(3):902-906
Obesity-associated protein (FTO) is an important m6A demethylase that regulates RNA methylation modification and can promote the proliferation of acute myeloid leukemia(AML) cells. FTO regulates the methylation level of AML through multiple cellular signaling pathways such as FTO/RARA/ASB2, FTO/m6A/CEBPA, and PDGFRB/ERK, and participates in the occurrence, development, treatment and prognosis of AML. At present, studies have found that a variety of inhibitors targeting FTO have shown good anti-leukemia effects, and the study of FTO will provide new ideas for the treatment of AML. This review focus on the mechanism of action of FTO in AML and the research progress of FTO inhibitors in AML.
Humans
;
Methylation
;
Leukemia, Myeloid, Acute/genetics*
;
Prognosis
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism*
7.Effects of interferon regulatory factor 9 on the biological phenotypes in PML-RARα-induced promyelocytic leukemia.
Xue YANG ; Hai Yan XING ; Ke Jing TANG ; Zheng TIAN ; Qing RAO ; Min WANG ; Jian Xiang WANG
Chinese Journal of Hematology 2022;43(5):370-375
Objective: To investigate the prognostic significance of interferon regulatory factor 9 (IRF9) expression and identify its role as a potential therapeutic target in acute promyelocytic leukemia (APL) . Methods: The gene expression profile and survival data applied in the bioinformatic analysis were obtained from The Cancer Genome Atlas and Beat acute myeloid leukemia (AML) cohorts. A dox-induced lentiviral system was used to induce the expression of PML-RARα (PR) in U937 cells, and the expression level of IRF9 in U937 cells treated with or without ATRA was examined. We then induced the expression of IRF9 in NB4, a promyelocytic leukemia cell line. In vitro studies focused on leukemic phenotypes triggered by IRF9 expression. Results: ①Bioinformatic analysis of the public database demonstrated the lowest expression of IRF9 in APL among all subtypes of AML, with lower expression associated with worse prognosis. ②We successfully established a PR-expression-inducible U937 cell line and found that IRF9 was downregulated by the PR fusion gene in APL, with undetectable expression in NB4 promyelocytic cells. ③An IRF9-inducible NB4 cell line was successfully established. The inducible expression of IRF9 promoted the differentiation of NB4 cells and had a synergistic effect with lower doses of ATRA. In addition, the inducible expression of IRF9 significantly reduced the colony formation capacity of NB4 cells. Conclusion: In this study, we found that the inducible expression of PR downregulates IRF9 and can be reversed by ATRA, suggesting a specific regulatory relationship between IRF9 and the PR fusion gene. The induction of IRF9 expression in NB4 cells can promote cell differentiation as well as reduce the colony forming ability of leukemia cells, implying an anti-leukemia effect for IRF9, which lays a biological foundation for IRF9 as a potential target for the treatment of APL.
Cell Differentiation
;
Humans
;
Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism*
;
Leukemia, Myeloid, Acute/drug therapy*
;
Leukemia, Promyelocytic, Acute/genetics*
;
Oncogene Proteins, Fusion/metabolism*
;
Phenotype
;
Tretinoin/therapeutic use*
;
U937 Cells
8.Effect of Down-Regulation of ANRIL on Proliferation and Apoptosis of Kasumi-1 Cells and Its Potential Mechanism.
Cheng-Si ZHANG ; Jian-Xia XU ; Fa-Hua DENG ; Hua-Li HU ; Si-Qi WANG ; Hai HUANG ; Si-Xi WEI
Journal of Experimental Hematology 2022;30(4):984-989
OBJECTIVE:
To investigate the down-regulation of ANRIL (Antisense non-coding RNA in the INK4 Locus) effects on proliferation and apoptosis of Kasumi-1 cells and its related molecular mechanism.
METHODS:
Recombinant lentivirus was used to construct ANRIL down-regulation Kasumi-1 cells (sh-ANRIL group) and its control cells (sh-NC group). A fluorescence microscope was used to observe the transfection efficiency, RT-qPCR was used to detect knockdown efficiency and ANRIL expression in PBMCs and MBMCs of patients with acute myeloid leukemia (AML). Proliferation and apoptosis of Kasumi-1 cells were assayed by CCK-8 method and flow cytometry. Western blot was employed to detect the expression of PI3K, AKT, p-AKT, and relevant protein after down-regulation of ANRIL in Kasumi-1 cells.
RESULTS:
ANRIL overexpressed significantly in PBMCs and MBMCs of patients with AML, the transfection efficiency of recombinant lentivirus carrying sh-ANRIL and sh-NC on Kasumi-1 cells exceeded 90%, and the knockdown efficiency was 70%. When DNR was administrated for 24, 48, and 72 hours, the cell inhibition rate of the sh-ANRIL group was (47.40±1.49)%, (69.11±0.51)% and (91.82±1.10)%, which were significantly higher than those of the sh-NC group, respectively (P<0.05). The apoptotic rate in the sh-ANRIL group was (10.29±0.58)%, which was significantly higher than (5.42±0.67)% of the sh-NC group (P<0.01). After DNR treatment for 24 hours, the apoptotic rate of the sh-ANRIL group was (54.41±1.69)%, which was significantly higher than (38.28±1.42)% of sh-NC group (P<0.001). Western blot revealed that the protein levels of PI3K, p-AKT, PCNA, and BCL-2 in the sh-ANRIL group were reduced significantly than those in the sh-NC group, while the BAX protein expression increased.
CONCLUSION
ANRIL may affect the proliferation and apoptosis of Kasumi-1 cells through PI3K/AKT signaling pathway. ANRIL is a potential therapeutic target for AML.
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Down-Regulation
;
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/genetics*
;
RNA, Long Noncoding/genetics*
9.Effect of Negative Regulation of LncRNA XIST to MiR-196b on the Biological Behavior of Acute Myeloid Leukemia Cells KG1a.
Zheng WANG ; Xing-Fan MA ; Chun-Chao WAN ; Lan ZHANG ; Jing-Bo WANG
Journal of Experimental Hematology 2022;30(5):1318-1323
OBJECTIVE:
To investigate the effect and molecular mechanism of lncRNA X-inactive specific transcript (XIST) on the proliferation and apoptosis of acute myeloid leukemia cells KG1a.
METHODS:
Forty-one patients with acute myeloid leukemia from January 2017 to May 2019 treated in Beijing Aerospace Center Hospital were collected, as well as 20 patients who conformed to the international standard of iron deficiency anemia as control group. KG1a cells were divided into pcDNA group, pcDNA-XIST group, pcDNA-XIST+miR-NC group, and pcDNA-XIST+miR-196b group. Real-time fluorescence quantitative PCR was used to detect the expressions of XIST and miR-196b, CCK-8 was used to detect cell activity, flow cytometry was used to detect cell cycle and apoptosis, Western blot method was used to detect the protein expressions of cleaved-caspase3, pro-caspase3, Bax, and Bcl-2, and dual luciferase report experiment was used to detect the targeting relationship between XIST and miR-196b.
RESULTS:
The expression level of lncRNA XIST in bone marrow cells in the AML group was significantly lower than that in the iron deficiency anemia group (P<0.001). Compared with pcDNA group, the expression level of lncRNA XIST, proportion of cells in G0/G1 phase, apoptosis rate, and the expression levels of cleaved-caspase3 and Bax in the pcDNA-XIST group of KG1a cells were significantly increased (all P<0.001), while the expression level of miR-196b, cell viability, the proportion of S-phase cells, and the expression levels of pro-caspase3 and Bcl-2 were significantly decreased (all P<0.001). Compared with pcDNA-XIST group, the cell activity, proportion of S-phase cells, and the expression levels of pro-caspase3 and Bcl-2 in the pcDNA-XIST+miR-196b group were significantly increased (all P<0.001), while the proportion of cells in the G0/G1 phase, apoptosis rate, and the expression levels of cleaved-caspase3 and Bax decreased (all P<0.001).
CONCLUSION
Overexpression of lncRNA XIST can inhibit the proliferation of acute myeloid leukemia cells KG1a and promote apoptosis by down-regulating the expression of miR-196b.
Anemia
;
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Humans
;
Leukemia, Myeloid, Acute/metabolism*
;
MicroRNAs/metabolism*
;
Proto-Oncogene Proteins c-bcl-2
;
RNA, Long Noncoding/genetics*
;
Sincalide
;
bcl-2-Associated X Protein
10.Effect of Curcumin on the Proliferation, Apoptosis, and Cell Cycle of Human Acute Myeloid Leukemia Cell Line K562.
Ying-Ying LI ; Hong-Chun LIU ; Qing ZHANG ; Rui-Ting FENG ; Yin-Sen SONG ; Liang MING
Journal of Experimental Hematology 2022;30(5):1343-1347
OBJECTIVE:
To investigate the effects of curcumin on the proliferation, apoptosis, and cell cycle of human acute myeloid leukemia cell line K562.
METHODS:
MTT method was used to detect the proliferation inhibition of logarithmic growth phase human acute myeloid leukemia K562 cells, flow cytometry was used to detect the cell cycle, Annexin V-FITC was used to detect the apoptosis rate, and real-time fluorescent quantitative PCR and Western blot were used to detect the expression of Bax, BCL-2 and caspase-3 mRNA and protein, respectively.
RESULTS:
The inhibition rate of cell proliferation in curcumin 10, 20, and 40 μmol/L group for 24 h and 48 h were higher than that in the control group (curcumin 0 μmol/L), and the cell proliferation inhibition rate was concentration-time dependent (r=0.879, r=0.914). The proportion of G0/G1 cells and apoptosis rate of K562 cells in the curcumin 10, 20, and 40 μmol/L group were higher than those in the control group, and showed drug concentration dependent (r=0.856, r=0.782). The expression of Bax and Caspase-3 mRNA in the curcumin 10, 20, and 40 μmol/L group was higher, while BCL-2 mRNA was lower than those in the control group, and showed drug concentration dependent (r=0.861, r=0.748, r=-0.817). The gray value of Bax protein expression in the curcumin 10, 20, and 40 μmol/L group was higher than that in the control group, while the gray value of BCL-2 and Caspase-3 protein expression was lower than that in the control group, and showed drug concentration dependent (r=0.764, r=-0.723, r=-0.831).
CONCLUSION
Curcumin can inhibit the proliferation of human acute myeloid leukemia cell line K562 cells, block the cell cycle at G0/G1 phase, promote cell apoptosis, and induce apoptosis by regulating Bax, BCL-2, and Caspase-3.
Apoptosis
;
Caspase 3/metabolism*
;
Cell Cycle
;
Cell Proliferation
;
Curcumin/pharmacology*
;
Humans
;
K562 Cells
;
Leukemia, Myeloid, Acute/genetics*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Messenger/metabolism*
;
bcl-2-Associated X Protein/pharmacology*

Result Analysis
Print
Save
E-mail