1.Mechanism of Yishen Huoxue Tongqiao Formula in Improving Unilateral Vestibular Labyrinth Destruction by Regulating Metabolism-neuroplasticity
Yu TIAN ; Hui LENG ; Rupeng QU ; Xianglong HAO ; Aiping WANG ; Lei SHI ; Zhongyuan QU ; Ye DONG ; Xiande MA ; Yangling HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):54-64
ObjectiveThis study aims to explore the mechanism by which Yishen Huoxue Tongqiao Formula improves metabolism-neuroplasticity and treats unilateral vestibular labyrinth destruction by regulating the metabolic balance of glutamate (Glu)/γ-aminobutyric acid (GABA). Methods48 Sprague-Dawley (SD) adult rats were randomly divided into the sham operation group, model group, Yishen Huoxue Tongqiao Formula groups with low, medium, and high doses (9.20, 18.39, 36.78 g·kg-1), and betahistine group (1.62 mg·kg-1). A unilateral vestibular labyrinth destruction (vestibular dysfunction) model was established by intratympanic injection of chloroform into the right ear, while the control group received intratympanic injection of normal saline. Drugs were administered once daily for seven consecutive days. During the period, behavioral tests were performed to evaluate the behaviors of rats after unilateral vestibular labyrinth destruction. Hematoxylin-eosin (HE) staining and Nissl staining were used to observe the neuronal morphology in the medial vestibular nucleus. Golgi staining was employed to assess the number of dendritic spines of neurons in the medial vestibular nucleus. Ultra-performance liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS) was utilized to detect Glu/GABA. Immunofluorescence and immunohistochemistry were used to detect the expressions of neuronal nuclei (NeuN), growth-associated protein 43 (GAP-43), and glial fibrillary acidic protein (GFAP). Western blot and real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) were applied to determine the expressions of glutamate-immunoreactive (Glu-IR), GABA, GFAP, postsynaptic density protein 95 (PSD-95), and GAP-43. ResultsCompared with the sham operation group, the model group presented with head deviation, balance disorder, increased tail suspension score, nuclear consolidation of medial vestibular nerve neurons, and decreased Nissl bodies (P<0.01). The number of dendritic spines in neurons and NeuN-positive cells decreased. The content of Glu decreased. The content of GABA increased (Glu/GABA decreased). The expression of GAP-43 was down-regulated, and GFAP was up-regulated (P<0.05, P<0.01). The expressions of Glu-IR, PSD-95, and GAP-43 proteins, as well as Glu-IR mRNA decreased, while the expressions of GABA and GFAP proteins and mRNA increased (P<0.05, P<0.01). Compared with those in the model group, the head deviation, imbalanced behavior, and tail suspension scores in each treatment group decreased, with alleviated neuronal injury and recovered Nissl bodies (P<0.01). The number of dendritic spines of neurons increased, and the number of NeuN-positive cells rebounded. The content of Glu increased, and the content of GABA decreased (Glu/GABA increased). GFAP was down-regulated, and GAP-43 was up-regulated (P<0.05, P<0.01). The expressions of Glu-IR, PMD-95, and GAP-43 proteins, as well as Glu-IR mRNA increased, while the expressions of GABA and GFAP proteins and mRNA decreased. The effect was more significant in the high-dose group (P<0.01). ConclusionThe Yishen Huoxue Tongqiao Formula can alleviate vestibular dysfunction, and its mechanism may be associated with regulating the metabolic balance of Glu/GABA, mitigating neural damage, improving synaptic plasticity (promoting GAP-43 expression and inhibiting GFAP expression), and facilitating vestibular compensation.
2.Gradient artificial bone repair scaffold regulates skeletal system tissue repair and regeneration
Yu ZHANG ; Ruian XU ; Lei FANG ; Longfei LI ; Shuyan LIU ; Lingxue DING ; Yuexi WANG ; Ziyan GUO ; Feng TIAN ; Jiajia XUE
Chinese Journal of Tissue Engineering Research 2025;29(4):846-855
BACKGROUND:Gradient artificial bone repair scaffolds can mimic unique anatomical features in musculoskeletal tissues,showing great potential for repairing injured musculoskeletal tissues. OBJECTIVE:To review the latest research advances in gradient artificial bone repair scaffolds for tissue engineering in the musculoskeletal system and describe their advantages and fabrication strategies. METHODS:The first author of the article searched the Web of Science and PubMed databases for articles published from 2000 to 2023 with search terms"gradient,bone regeneration,scaffold".Finally,76 papers were analyzed and summarized after the screening. RESULTS AND CONCLUSION:(1)As an important means of efficient and high-quality repair of skeletal system tissues,gradient artificial bone repair scaffolds are currently designed bionically for the natural gradient characteristics of bone tissue,bone-cartilage,and tendon-bone tissue.These scaffolds can mimic the extracellular matrix of native tissues to a certain extent in terms of structure and composition,thus promoting cell adhesion,migration,proliferation,differentiation,and regenerative recovery of damaged tissues to their native state.(2)Advanced manufacturing technology provides more possibilities for gradient artificial bone repair scaffold preparation:Gradient electrospun fiber scaffolds constructed by spatially differentiated fiber arrangement and loading of biologically active substances have been developed;gradient 3D printed scaffolds fabricated by layered stacking,graded porosity,and bio-3D printing technology;gradient hydrogel scaffolds fabricated by in-situ layered injections,simple layer-by-layer stacking,and freeze-drying method;and in addition,there are also scaffolds made by other modalities or multi-method coupling.These scaffolds have demonstrated good biocompatibility in vitro experiments,were able to accelerate tissue regeneration in small animal tests,and were observed to have significantly improved histological structure.(3)The currently developed gradient artificial bone repair scaffolds have problems such as mismatch of gradient scales,unclear material-tissue interactions,and side effects caused by degradation products,which need to be further optimized by combining the strengths of related disciplines and clinical needs in the future.
3.Mechanism of Gushining Granules in Attenuating Dexamethasone-induced Apoptosis of Bone Marrow Mesenchymal Stem Cells via Activating PI3K/Akt/Bad Signalling Pathway
Chengyu CHU ; Lei ZHU ; Long LIANG ; Feng WANG ; Xuejian YU ; Wenwu LIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):115-122
ObjectiveTo establish steroid-induced osteonecrosis of the femoral head (SANFH) cell model by using dexamethasone (DEX)-induced bone marrow mesenchymal stem cells (BMSCs) and demonstrate that Gushing Granules (GSNs) exert an improving effect by activating the phosphatidylinositol-3-kinase/protein kinase B/B-lymphoma-2 gene related promoter (PI3K/Akt/Bad) signalling pathway. MethodsFirstly, SD rats were orally administered with drugs at a dose of 0.9 g·kg-1 to prepare GSN-containing serum, and CCK-8 screening was used to determine the optimal dosage and duration of action. Then, BMSCs were cultured and treated with 1×10-6 mol·L-1 DEX, 10% GSN-containing serum, and inhibitor LY294002 of PI3K/Akt signalling pathway for 24 hours to model and group SANFH cells. Cell viability and proliferation were detected by using CCK-8 assay kit and EdU staining kit. Flow cytometry was used to detect cell apoptosis. An alkaline phosphatase (ALP) assay kit was employed to detect ALP expression. In order to detect the PI3K/Akt/Bad signalling pathway and protein and mRNA expression of apoptosis-related proteins such as apoptosis regulatory factors B-cell lymphoma-2 gene (Bcl-2), and Bcl-2-associated X protein (Bax), osteocalcin (OCN), and Collagen Ⅰ, we used Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsThe CCK-8 assay kit determined that the optimal dosage for GSN-containing serum is 10%, and the duration of action is 48 hours. After modelling and grouping the cells in each group, the detection results showed that the SANFH model group had significantly lower cell viability, cell proliferation, and ALP expression, as well as protein and mRNA expressions of PI3K, Akt, Bad, Bcl-2, OCN, and Collagen I compared to the blank group. The nucleic acid and protein levels of the Bax index and the cell apoptosis rate detected by flow cytometry significantly increased (P<0.05,P<0.01). After treatment with GSN-containing serum, cell viability, cell proliferation, and ALP expression, as well as expressions of PI3K, Akt, Bad, Bcl-2, OCN, and Collagen Ⅰ nucleic acids and proteins were significantly increased, while the nucleic acid and protein levels of the Bax index and the cell apoptosis rate detected by flow cytometry significantly decreased(P<0.05,P<0.01). Compared with the GSN drug-containing serum group, the simultaneous treatment with the inhibitor LY294002 and GSN drug-containing serum reversed the improvement effect of GSN. Specifically, the cell viability, cell proliferation, ALP expression, and the nucleic acid and protein levels of PI3K, Akt, Bad, Bcl-2, OCN, and Collagen Ⅰ were all significantly decreased, while the nucleic acid and protein levels of the Bax index and the cell apoptosis rate detected by flow cytometry were significantly increased (P<0.05, P<0.01). ConclusionGSNs antagonize DEX-induced apoptosis of BMSCs by activating the PI3K/Akt/Bad signalling pathway, providing a scientific theoretical basis for the clinical treatment of SANFH with GSNs.
4.The introduction on standards system of the pharmaceutical packaging materials in the Chinese Pharmacopoeia 2025 Edition
CHEN Lei ; YU Hui ; WANG Yan ; ZHANG Jun ; MA Shuangcheng
Drug Standards of China 2025;26(1):067-076
The standard of Pharmaceutical packaging materials is an important part of the Chinese Pharmacopoeia. This article focuses on working background, general idea, working process, main framework, and its role and significance of the pharmaceutical packaging materials standards system in the Chinese Pharmacopoeia 2025 Edition, which can contribute to accurately understand and utilize the standards in the Chinese Pharmacopoeia 2025 Edition.
5.Application of "balance-shaped sternal elevation device" in the subxiphoid uniportal video-assisted thoracoscopic surgery for anterior mediastinal masses resection
Jinlan ZHAO ; Weiyang CHEN ; Chunmei HE ; Yu XIONG ; Lei WANG ; Jie LI ; Lin LIN ; Yushang YANG ; Lin MA ; Longqi CHEN ; Dong TIAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):308-312
Objective To introduce an innovative technique, the "balance-shaped sternal elevation device" and its application in the subxiphoid uniportal video-assisted thoracoscopic surgery (VATS) for anterior mediastinal masses resection. Methods Patients who underwent single-port thoracoscopic assisted anterior mediastinal tumor resection through the xiphoid process at the Department of Thoracic Surgery, West China Hospital, Sichuan University from May to June 2024 were included, and their clinical data were analyzed. Results A total of 7 patients were included, with 3 males and 4 females, aged 28-72 years. The diameter of the tumor was 1.9-17.0 cm. The operation time was 62-308 min, intraoperative blood loss was 5-100 mL, postoperative chest drainage tube retention time was 0-9 days, pain score on the 7th day after surgery was 0-2 points, and postoperative hospital stay was 3-12 days. All patients underwent successful and complete resection of the masses and thymus, with favorable postoperative recovery. Conclusion The "balance-shaped sternal elevation device" effectively expands the retrosternal space, providing surgeons with satisfactory surgical views and operating space. This technique significantly enhances the efficacy and safety of minimally invasive surgery for anterior mediastinal masses, reduces trauma and postoperative pain, and accelerates patient recovery, demonstrating important clinical significance and application value.
6.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
7.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
8.Study on Brain Functional Network Characteristics of Parkinson’s Disease Patients Based on Beta Burst Period
Yu-Jie HAO ; Shuo YANG ; Shuo LIU ; Xu LOU ; Lei WANG
Progress in Biochemistry and Biophysics 2025;52(5):1279-1289
ObjectiveThe central symptom of Parkinson’s disease (PD) is impaired motor function. Beta-band electrical activity in the motor network of the basal ganglia is closely related to motor function. In this study, we combined scalp electroencephalography (EEG), brain functional network, and clinical scales to investigate the effects of beta burst-period neural electrical activity on brain functional network characteristics, which may serve as a reference for clinical diagnosis and treatment. MethodsThirteen PD patients were included in the PD group, and 13 healthy subjects were included in the healthy control group. Resting-state EEG data were collected from both groups, and beta burst and non-burst periods were extracted. A phase synchronization network was constructed using weighted phase lag indices, and the topological feature parameters of phase synchronization network were compared between the two groups across different periods and four frequency bands. Additionally, the correlation between changes in network characteristics and clinical symptoms was analyzed. ResultsDuring the beta burst period, the topological characteristic parameters of phase synchronization network in all four frequency bands were significantly higher in PD patients compared to healthy controls. The average clustering coefficient of the phase synchronization network in the beta band during the beta burst period was negatively correlated with UPDRS-III scores. In the low gamma band during the non-burst period, the average clustering coefficient of phase synchronization network was positively correlated with UPDRS and UPDRS-III scores, while UPDRS-III scores were positively correlated with global efficiency and average degree. ConclusionThe brain functional network features of PD patients were significantly enhanced during the beta burst period. Moreover, the beta-band brain functional network characteristics during the beta burst period were negatively correlated with clinical scale scores, whereas low gamma-band functional network features during the non-burst period were positively correlated with clinical scale scores. These findings indicate that motor function impairment in PD patients is associated with the beta burst period. This study provides valuable insights for the diagnosis of PD.
9.Genetic Correlation and Mendelian Randomization Analysis Revealed an Unidirectional Causal Relationship Between Left Caudal Middle Frontal Surface Area and Cigarette Consumption
Hongcheng XIE ; Anlin WANG ; Minglan YU ; Tingting WANG ; Xuemei LIANG ; Rongfang HE ; Chaohua HUANG ; Wei LEI ; Jing CHEN ; Youguo TAN ; Kezhi LIU ; Bo XIANG
Psychiatry Investigation 2025;22(3):279-286
Objective:
Previous studies have discovered a correlation between cigarette smoking and cortical thickness and surface area, but the causal relationship remains unclear. The objective of this investigation is to scrutinize the causal association between them.
Methods:
To derive summary statistics from a genome-wide association study (GWAS) on cortical thickness, surface area, and four smoking behaviors: 1) age of initiation of regular smoking (AgeSmk); 2) smoking initiation (SmkInit); 3) smoking cessation (SmkCes); 4) cigarettes per day (CigDay). Linkage disequilibrium score regression (LDSC) was employed to examine genetic association analysis. Furthermore, for traits with significant genetic associations, Mendelian randomization (MR) analyses were conducted.
Results:
The LDSC analysis revealed nominal genetic correlations between AgeSmk and right precentral surface area, left caudal anterior cingulate surface area, left cuneus surface area, left inferior parietal surface area, and right caudal anterior cingulate thickness, as well as between CigDay and left caudal middle frontal surface area, between SmkCes and left entorhinal thickness, and between SmkInit and left rostral anterior cingulate surface area, right rostral anterior cingulate thickness, and right superior frontal thickness (rg=-0.36–0.29, p<0.05). MR analysis showed a unidirectional causal association between left caudal middle frontal surface area and CigDay (βIVW=0.056, pBonferroni=2×10-4).
Conclusion
Left caudal middle frontal surface area has the potential to serve as a significant predictor of smoking behavior.
10.Long-term Outcomes of Endoscopic Radiofrequency Ablation versus Endoscopic Submucosal Dissection for Widespread Superficial Esophageal Squamous Cell Neoplasia
Xin TANG ; Qian-Qian MENG ; Ye GAO ; Chu-Ting YU ; Yan-Rong ZHANG ; Yan BIAN ; Jin-Fang XU ; Lei XIN ; Wei WANG ; Han LIN ; Luo-Wei WANG
Gut and Liver 2025;19(2):198-206
Background/Aims:
Endoscopic radiofrequency ablation (ERFA) is a treatment option for superficial esophageal squamous cell neoplasia (ESCN), with a relatively low risk of stenosis; however, the long-term outcomes remain unclear. We aimed to compare the long-term outcomes of patients with widespread superficial ESCN who underwent endoscopic submucosal dissection (ESD) or ERFA.
Methods:
We retrospectively analyzed the clinical data of patients with superficial ESCN who underwent ESD or ERFA between January 2015 and December 2021. The primary outcome measure was recurrence-free survival.
Results:
Ninety-two and 33 patients with superficial ESCN underwent ESD and ERFA, respectively. The en bloc, R0, and curative resection rates for ESD were 100.0%, 90.2%, and 76.1%, respectively. At 12 months, the complete response rate was comparable between the two groups (94.6% vs 90.9%, p=0.748). During a median follow-up of 66 months, recurrence-free survival was significantly longer in the ESD group than in the ERFA group (p=0.004), while no significant differences in overall survival (p=0.845) and disease-specific survival (p=0.494) were observed.Preoperative diagnosis of intramucosal cancer (adjusted hazard ratio, 5.55; vs high-grade intraepithelial neoplasia) was an independent predictor of recurrence. Significantly fewer patients in the ERFA group experienced stenosis compare to ESD group (15.2% vs 38.0%, p=0.016).
Conclusions
The risk of recurrence was higher for ERFA than ESD for ESCN but overall survival was not affected. The risk of esophageal stenosis was significantly lower for patients who underwent ERFA.

Result Analysis
Print
Save
E-mail