1.Association between Modified Yiqi Huoxue Jiedu Formula (益气活血解毒方) or PARP Inhibitors Maintenance Therapy and Recurrence and Metastasis in Advanced Ovarian Cancer:A Propensity Score Matched Case-Control Study
Yongjia CUI ; Wenping LU ; Lei CHANG ; Yilin WEI ; Xiyue WANG
Journal of Traditional Chinese Medicine 2025;66(3):256-261
ObjectiveTo investigate the association between the maintenance treatment of modified Yiqi Huoxue Jiedu Formula (益气活血解毒方) or poly ADP ribose polymerase (PARP) inhibitors and the recurrence and metastasis of advanced ovarian cancer. MethodsA case-control study design was employed, dividing patients with advanced ovarian cancer into two groups based on the occurrence of recurrence and metastasis following first-line maintenance treatment. Patients with recurrence and metastasis comprised the case group, while those without recurrence and metastasis served as the control group. The previous first-line maintenance treatment method was set as the exposure factor in the study (with the use of modified Yiqi Huoxue Jiedu Formula defined as exposed and PARP inhibitors defined as unexposed). Basic information was collected for both groups, including the achievement of satisfactory R0 surgery, age, stage, neoadjuvant chemotherapy, lymph node metastasis, germline BRCA1/2 mutations, homologous recombination deficiency positivity, first-line maintenance treatment method (modified Yiqi Huoxue Jiedu Formula or PARP inhibitors), and CA125 levels after the last chemotherapy. The baseline data of the two groups were assessed for differences. If there exists difference, a 1∶1 nearest neighbor matching method was used for propensity score matching. Univariate and multivariate logistic regression analyses were employed to evaluate the association between the modified Yiqi Huoxue Jiedu Formula or PARP inhibitors and the recurrence and metastasis of ovarian cancer. ResultsA total of 201 patients with advanced ovarian cancer were included, with 97 in the case group and 104 in the control group. Both groups showed statistically significant differences in R0 surgery, stage, neoadjuvant chemotherapy, and CA125 levels after the last chemotherapy (P<0.05), indicating baseline imbalance. After propensity score matching, there were 71 patients in both the case and control groups, achieving baseline balance (P>0.05). Univariate logistic regression analysis indicated that the achievement of satisfactory R0 surgery (P = 0.006), disease stage (P = 0.001), the use of neoadjuvant chemotherapy (P = 0.024), treatment modality (P = 0.006), and CA125 levels after the last chemotherapy (P = 0.013) were associated with the recurrence and metastasis of ovarian cancer. Multivariate logistic regression analysis revealed that disease stage was an independent influencing factor for the recurrence and metastasis of ovarian cancer (P = 0.030), whereas the P-value for the correlation between first-line maintenance treatment and ovarian cancer was 0.188. ConclusionFirst-line maintenance treatment of ovarian cancer patients with the use of modified Yiqi Huoxue Jiedu Formula or PARP inhibitors does not correlate with the recurrence and metastasis of ovarian cancer.
2.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
3.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
4.Analysis of alanine aminotransferase screening results in blood donors and quality management measures
Liang ZANG ; Lei ZHOU ; Le CHANG ; Lunan WANG
Chinese Journal of Blood Transfusion 2025;38(4):474-481
[Objective] To explore quality issues and quality management measures in alanine aminotransferase (ALT) testing, aiming to improve consistency and accuracy of ALT test results by analyzing the outcomes from different pre-donation screening methods and different sample sources. [Methods] Data were collected from 58 blood collection and supply institutions across China. ALT test results from donor samples analyzed by dry chemistry analyzers, semi-automatic biochemical analyzers, and automatic biochemical analyzers were compared, focusing on the influence of venous versus capillary blood samples on testing accuracy. By comparing results from pre-donation screening with laboratory testing, the current state of quality management for different methods and sample types was assessed. Differences in ALT unqualified rates between laboratories were analyzed, and quality improvement strategies were proposed accordingly. [Results] No significant differences were found in laboratory ALT unqualified rates between venous and capillary blood samples during pre-donation screening across different analytical methods (P>0.05). However, laboratory ALT unqualified rates were consistently lower for venous blood compared to capillary blood, regardless of the testing method used (P<0.05). Notable differences in quality control were observed among various blood collection and supply institutions (P<0.05). [Conclusion] Minimal differences were observed between pre-donation ALT screening results obtained by the three analytical methods and laboratory test outcomes; thus, blood stations can select an appropriate testing method according to their specific conditions. Pre-donation screening using venous blood samples demonstrated superior reliability in quality control compared to capillary blood samples. Significant variations in ALT unqualified rates among blood stations suggest that blood collection and supply institutions should emphasize quality management at both the pre-donation screening and laboratory testing stages. Measures such as optimized standardized operating procedures, regular equipment calibration and maintenance, proficiency testing, internal quality control, inter-system comparisons, and enhanced personnel training and evaluation should be implemented to ensure consistent and stable screening results, thereby reducing ALT unqualified rates.
5.Glutamatergic neurons in thalamic paraventricular nucleus may be involved in the regulation of abnormal sleep behavior of Shank3 gene knockout mice.
Chang-Feng CHEN ; Lie-Cheng WANG ; Yong LIU ; Lei CHEN
Acta Physiologica Sinica 2025;77(5):792-800
The purpose of this study was to investigate the anxiety-like behaviors, circadian rhythms and sleep, and to elucidate the possible underlying mechanisms of the abnormal sleep behavior in Shank3 gene knockout (Shank3-KO) mice. The anxiety-like behaviors were detected by elevated plus-maze (EPM) test, open field test (OFT) and tail suspension test (TST). The circadian rhythms were detected by running wheel test. The electroencephalogram (EEG)/electromyogram (EMG) recordings were performed synchronically by polysomnograph. The distribution of SHANK3 in anterior cingulate cortex (ACC), paraventricular thalamus (PVT), nucleus accumbens (NAc), basolateral amygdala (BLA) and hippocampal CA2 region in wild type (WT) mice was detected by immunofluorescence assay. The protein expression of c-Fos in PVT, ACC and NAc was also detected by immunofluorescence assay during light cycle. The colocalization of c-Fos and vesicular glutamate transporter 2 (Vglut2, a marker for glutamatergic neurons) in the PVT was detected by immunofluorescence double labeling experiment. The results of EPM test showed that, compared with the WT mice, the Shank3-KO mice showed less time in open arms and less number of open arm entries. The results of OFT showed that the Shank3-KO mice showed less time in central area and less number of central area entries. The immobility time of Shank3-KO mice was increased in the TST. The results of running wheel rhythm test showed that the phase shift time of Shank3-KO mice in the continuous dark period was increased. The results of EEG/EMG recording showed that, compared with the WT mice, the duration of wakefulness in Shank3-KO mice was increased and the duration of non-rapid eye movement (NREM) sleep was decreased during light phase; The bout number of wakefulness was increased, the bout number of NREM sleep was decreased, NREM-wake transitions were increased, and wake-NREM transitions were decreased during light phase. SHANK3 was expressed in ACC, PVT, NAc and BLA in the WT mice. The expression of c-Fos in the PVT of Shank3-KO mice was up-regulated 2 h after entering the light phase, and majority of c-Fos was co-localized with Vglut2. These results suggest that the anxiety level of Shank3-KO mice is increased, the regulation of the internal rhythms is decreased, and the bout number of wakefulness is increased during light phase. The glutamatergic neurons in PVT may be involved in the regulation of abnormal sleep behavior in Shank3-KO mice during the light phase.
Animals
;
Mice, Knockout
;
Mice
;
Neurons/metabolism*
;
Nerve Tissue Proteins/physiology*
;
Male
;
Midline Thalamic Nuclei/cytology*
;
Circadian Rhythm/physiology*
;
Sleep/physiology*
;
Anxiety/physiopathology*
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Vesicular Glutamate Transport Protein 2/metabolism*
;
Mice, Inbred C57BL
;
Microfilament Proteins
6.Oxocrebanine inhibits proliferation of hepatoma HepG2 cells by inducing apoptosis and autophagy.
Zheng-Wen WANG ; Cai-Yan PAN ; Chang-Long WEI ; Hui LIAO ; Xiao-Po ZHANG ; Cai-Yun ZHANG ; Lei YU
China Journal of Chinese Materia Medica 2025;50(6):1618-1625
The study investigated the specific mechanism by which oxocrebanine, the anti-hepatic cancer active ingredient in Stephania hainanensis, inhibits the proliferation of hepatic cancer cells. Firstly, methyl thiazolyl tetrazolium(MTT) assay, 5-bromodeoxyuridine(BrdU) labeling, and colony formation assay were employed to investigate whether oxocrebanine inhibited the proliferation of HepG2 and Hep3B2.1-7 cells. Propidium iodide(PI) staining was used to observe the oxocrebanine-induced apoptosis of HepG2 and Hep3B2.1-7 cells. Western blot was employed to verify whether apoptotic effector proteins, such as cleaved cysteinyl aspartate-specific protease 3(c-caspase-3), poly(ADP-ribose) polymerase 1(PARP1), B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), Bcl-2 homologous killer(Bak), and myeloid cell leukemia-1(Mcl-1) were involved in apoptosis. Secondly, HepG2 cells were simultaneously treated with oxocrebanine and the autophagy inhibitor 3-methyladenine(3-MA), and the changes in the autophagy marker LC3 and autophagy-related proteins [eukaryotic translation initiation factor 4E-binding protein 1(4EBP1), phosphorylated 4EBP1(p-4EBP1), 70-kDa ribosomal protein S6 kinase(P70S6K), and phosphorylated P70S6K(p-P70S6K)] were determined. The results of MTT assay, BrdU labeling, and colony formation assay showed that oxocrebanine inhibited the proliferation of HepG2 and Hep3B2.1-7 cells in a dose-dependent manner. The results of flow cytometry suggested that the apoptosis rate of HepG2 and Hep3B2.1-7 cells increased after treatment with oxocrebanine. Western blot results showed that the protein levels of c-caspase-3, Bax, and Bak were up-regulated and those of PARP1, Bcl-2, and Mcl-1 were down-regulated in the HepG2 cells treated with oxocrebanine. The results indicated that oxocrebanine induced apoptosis, thereby inhibiting the proliferation of hepatic cancer cells. The inhibition of HepG2 cell proliferation by oxocrebanine may be related to the induction of protective autophagy in hepatocellular carcinoma cells. Oxocrebanine still promoted the conversion of LC3-Ⅰ to LC3-Ⅱ, reduced the phosphorylation levels of 4EBP1 and P70S6K, which can be reversed by the autophagy inhibitor 3-MA. It is prompted that oxocrebanine can inhibit the proliferation of hepatic cancer cells by inducing autophagy. In conclusion, oxocrebanine inhibits the proliferation of hepatic cancer cells by inducing apoptosis and autophagy.
Humans
;
Apoptosis/drug effects*
;
Autophagy/drug effects*
;
Cell Proliferation/drug effects*
;
Hep G2 Cells
;
Liver Neoplasms/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Caspase 3/genetics*
7.Study on mechanism of naringin in alleviating cerebral ischemia/reperfusion injury based on DRP1/LRRK2/MCU axis.
Kai-Mei TAN ; Hong-Yu ZENG ; Feng QIU ; Yun XIANG ; Zi-Yang ZHOU ; Da-Hua WU ; Chang LEI ; Hong-Qing ZHAO ; Yu-Hong WANG ; Xiu-Li ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2484-2494
This study aims to investigate the molecular mechanism by which naringin alleviates cerebral ischemia/reperfusion(CI/R) injury through DRP1/LRRK2/MCU signaling axis. A total of 60 SD rats were randomly divided into the sham group, the model group, the sodium Danshensu group, and low-, medium-, and high-dose(50, 100, and 200 mg·kg~(-1)) naringin groups, with 10 rats in each group. Except for the sham group, a transient middle cerebral artery occlusion/reperfusion(tMCAO/R) model was established in SD rats using the suture method. Longa 5-point scale was used to assess neurological deficits. 2,3,5-Triphenyl tetrazolium chloride(TTC) staining was used to detect the volume percentage of cerebral infarction in rats. Hematoxylin-eosin(HE) staining and Nissl staining were employed to assess neuronal structural alterations and the number of Nissl bodies in cortex, respectively. Western blot was used to determine the protein expression levels of B-cell lymphoma-2 gene(Bcl-2), Bcl-2-associated X protein(Bax), cleaved cysteine-aspartate protease-3(cleaved caspase-3), mitochondrial calcium uniporter(MCU), microtubule-associated protein 1 light chain 3(LC3), and P62. Mitochondrial structure and autophagy in cortical neurons were observed by transmission electron microscopy. Immunofluorescence assay was used to quantify the fluorescence intensities of MCU and mitochondrial calcium ion, as well as the co-localization of dynamin-related protein 1(DRP1) with leucine-rich repeat kinase 2(LRRK2) and translocase of outer mitochondrial membrane 20(TOMM20) with LC3 in cortical mitochondria. The results showed that compared with the model group, naringin significantly decreased the volume percentage of cerebral infarction and neurological deficit score in tMCAO/R rats, alleviated the structural damage and Nissl body loss of cortical neurons in tMCAO/R rats, inhibited autophagosomes in cortical neurons, and increased the average diameter of cortical mitochondria. The Western blot results showed that compared to the sham group, the model group exhibited increased levels of cleaved caspase-3, Bax, MCU, and the LC3Ⅱ/LC3Ⅰ ratio in the cortex and reduced protein levels of Bcl-2 and P62. However, naringin down-regulated the protein expression of cleaved caspase-3, Bax, MCU and the ratio of LC3Ⅱ/LC3Ⅰ ratio and up-regulated the expression of Bcl-2 and P62 proteins in cortical area. In addition, immunofluorescence analysis showed that compared with the model group, naringin and positive drug treatments significantly decreased the fluorescence intensities of MCU and mitochondrial calcium ion. Meanwhile, the co-localization of DRP1 with LRRK2 and TOMM20 with LC3 in cortical mitochondria was also decreased significantly after the intervention. These findings suggest that naringin can alleviate cortical neuronal damage in tMCAO/R rats by inhibiting DRP1/LRRK2/MCU-mediated mitochondrial fragmentation and the resultant excessive mitophagy.
Animals
;
Rats, Sprague-Dawley
;
Reperfusion Injury/genetics*
;
Flavanones/administration & dosage*
;
Rats
;
Dynamins/genetics*
;
Male
;
Brain Ischemia/genetics*
;
Protein Serine-Threonine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
8.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*
9.Clinical Characteristics and Prognostic Analysis of Newly Diagnosed Acute Myeloid Leukemia Patients with NRAS and KRAS Gene Mutations.
Zhang-Yu YU ; Bo CAI ; Yi WANG ; Yang-Yang LEI ; Bing-Xia LI ; Yu-Fang LI ; Yan-Ping SHI ; Jia-Xin CHEN ; Shu-Hong LIU ; Chang-Lin YU ; Mei GUO
Journal of Experimental Hematology 2025;33(3):682-690
OBJECTIVE:
To retrospectively analyze the clinical characteristics, co-mutated genes in newly diagnosed acute myeloid leukemia (AML) patients with NRAS and KRAS gene mutations, and the impact of NRAS and KRAS mutations on prognosis.
METHODS:
The clinical data and next-generation sequencing results of 80 newly diagnosed AML patients treated at our hospital from December 2018 to December 2023 were collected. The clinical characteristics, co-mutated genes of NRAS and KRAS , and the impact of NRAS and KRAS mutations on prognosis in newly diagnosed AML patients were analyzed.
RESULTS:
Among 80 newly diagnosed AML patients, NRAS mutations were detected in 20 cases(25.0%), and KRAS mutations were detected in 9 cases(11.3%). NRAS mutations predominantly occurred at codons 12 and 13 of exon 2, as well as codon 61 of exon 3, while KRAS mutations were most commonly occurred at codons 12 and 13 of exon 2, all of which were missense mutations. There were no statistically significant differences observed in terms of age, sex, white blood cell count(WBC), hemoglobin(Hb), platelet count(PLT), bone marrow blasts, first induction chemotherapy regimen, CR1/CRi1 rates, chromosome karyotype, 2022 ELN risk classification and allogeneic hematopoietic stem cell transplantation(allo-HSCT) among the NRAS mutation group, KRAS mutation group and NRAS/KRAS wild-type group (P >0.05). KRAS mutations were significantly correlated with PTPN11 mutations (r =0.344), whereas no genes significantly associated with NRAS mutations were found. Survival analysis showed that compared to the NRAS/KRAS wild-type group, patients with NRAS mutation had a relatively higher 5-year overall survival (OS) rate and relapse-free survival (RFS) rate, though the differences were not statistically significant (P =0.097, P =0.249). Compared to the NRAS/KRAS wild-type group, patients with KRAS mutation had a lower 5-year OS rate and RFS rate, with no significant differences observed (P =0.275, P =0.442). There was no significant difference in the 5-year RFS rate between the KRAS mutation group and NRAS mutation group (P =0.157), but the 5-year OS rate of patients with KRAS mutation was significantly lower than that of patients with NRAS mutation (P =0.037).
CONCLUSION
In newly diagnosed AML patients, KRAS mutation was significantly correlated with PTPN11 mutation. Compared to patients with NRAS/KRAS wild-type, those with NRAS mutation showed a more favorable prognosis, while patients with KRAS mutation showed a poorer prognosis; however, these differences did not reach statistical significance. Notably, the prognosis of AML patients with KRAS mutation was significantly inferior compared to those with NRAS mutation.
Humans
;
Leukemia, Myeloid, Acute/diagnosis*
;
Mutation
;
Prognosis
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
GTP Phosphohydrolases/genetics*
;
Retrospective Studies
;
Membrane Proteins/genetics*
;
Female
;
Male
;
Middle Aged
;
Adult
;
Aged
10.Clinical Features, Prognostic Analysis and Predictive Model Construction of Central Nervous System Invasion in Peripheral T-Cell Lymphoma.
Ya-Ting MA ; Yan-Fang CHEN ; Zhi-Yuan ZHOU ; Lei ZHANG ; Xin LI ; Xin-Hua WANG ; Xiao-Rui FU ; Zhen-Chang SUN ; Yu CHANG ; Fei-Fei NAN ; Ling LI ; Ming-Zhi ZHANG
Journal of Experimental Hematology 2025;33(3):760-768
OBJECTIVE:
To investigate the clinical features and prognosis of central nervous system (CNS) invasion in peripheral T-cell lymphoma (PTCL) and construct a risk prediction model for CNS invasion.
METHODS:
Clinical data of 395 patients with PTCL diagnosed and treated in the First Affiliated Hospital of Zhengzhou University from 1st January 2013 to 31st December 2022 were analyzed retrospectively.
RESULTS:
The median follow-up time of 395 PTCL patients was 24(1-143) months. There were 13 patients diagnosed CNS invasion, and the incidence was 3.3%. The risk of CNS invasion varied according to pathological subtype. The incidence of CNS invasion in patients with anaplastic large cell lymphoma (ALCL) was significantly higher than in patients with angioimmunoblastic T-cell lymphoma (AITL) (P <0.05). The median overall survival was significantly shorter in patients with CNS invasion than in those without CNS involvement, with a median survival time of 2.4(0.6-127) months after diagnosis of CNS invasion. The results of univariate and multivariate analysis showed that more than 1 extranodal involvement (HR=4.486, 95%CI : 1.166-17.264, P =0.029), ALCL subtype (HR=9.022, 95%CI : 2.289-35.557, P =0.002) and ECOG PS >1 (HR=15.890, 95%CI : 4.409-57.262, P <0.001) were independent risk factors for CNS invasion in PTCL patients. Each of these risk factors was assigned a value of 1 point and a new prediction model was constructed. It could stratify the patients into three distinct groups: low-risk group (0-1 point), intermediate-risk group (2 points) and high-risk group (3 points). The 1-year cumulative incidence of CNS invasion in the high-risk group was as high as 50.0%. Further evaluation of the model showed good discrimination and accuracy, and the consistency index was 0.913 (95%CI : 0.843-0.984).
CONCLUSION
The new model shows a precise risk assessment for CNS invasion prediction, while its specificity and sensitivity need further data validation.
Humans
;
Lymphoma, T-Cell, Peripheral/pathology*
;
Prognosis
;
Retrospective Studies
;
Central Nervous System Neoplasms/pathology*
;
Neoplasm Invasiveness
;
Male
;
Female
;
Central Nervous System/pathology*
;
Middle Aged
;
Adult

Result Analysis
Print
Save
E-mail