1.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Analysis of Differential Compounds of Poria cocos Medicinal Materials by Integrated Qualitative Strategy Based on UPLC-Q-Orbitrap-MS
Jiayuan WANG ; Xiaohan FAN ; Xiaoxiao WEI ; Rong CAO ; Jin WANG ; Lei WANG ; Fengqing XU ; Shunwang HUANG ; Deling WU ; Hongsu ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):148-156
ObjectiveTo establish a rapid analytical method for identifying the differential components in Poria cocos medicinal materials based on ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Orbitrap-MS), combined with mass defect filtering(MDF) and molecular network integration techniques. MethodsUPLC-Q-Orbitrap-MS was used for MS data acquisition and identification of P. cocos medicinal materials, with the help of MDF for the study of cleavage behavior and structural identification of triterpenoids. According to the similarity of MS/MS fragmentation patterns of each component, global natural product social molecular network(GNPS) was established, and Cytoscape 3.6.1 was used to screen molecular clusters with similar structures and the the structure of main compound classes were identified and confirmed. Multivariate statistical analyses such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to screen the differential components of the five P. cocos medicinal materials with the variable importance in the projection(VIP) value>1 and P<0.05 as the criteria. ResultsA total of 66 compounds were identified by database comparison, 8 compounds were newly identified by MDF, 28 compounds were newly identified by GNPS, and a total of 102 chemical compounds were identified, including 43 triterpenoids, 16 saccharides, 26 amino acids and peptides, 3 nucleosides, and 14 other compounds. Triterpenoids were predominant in Poriae Cutis and wild Fushen, amino acids and peptides were the most abundant in Poria and cultivated Fushen, carbohydrates were the most abundant in Poriae Cutis. Type Ⅰ and Ⅱ triterpenoids had higher amounts in Poria and cultivated Fushen, type Ⅲ triterpenoids were more abundant in Poriae Cutis, all four types of triterpenoids were higher in Fushenmu, and type Ⅰ, Ⅱ, and Ⅳ triterpenoids were higher in wild Fushen. A total of 12 common differential chemical constituents were screened, including serine, guanosine, gallic acid, 2-octenal, maltotriose, trametenolic acid, dehydroeburicoic acid, dehydrotrametenolic acid, poricoic acid A, poricoic acid B, poricoic acid E and G, but the relative contents of them varied significantly among different medicinal materials. ConclusionAmong the five P. cocos medicinal materials, the types of constituents are generally similar, but their relative contents differed significantly among these medicinal materials, especially in the distribution of triterpenoids. The integration of UPLC-Q-Orbitrap-MS, MDF and GNPS can provide a reference for the rapid qualitative analysis of other Chinese medicines.
4.Analysis of Differential Compounds of Poria cocos Medicinal Materials by Integrated Qualitative Strategy Based on UPLC-Q-Orbitrap-MS
Jiayuan WANG ; Xiaohan FAN ; Xiaoxiao WEI ; Rong CAO ; Jin WANG ; Lei WANG ; Fengqing XU ; Shunwang HUANG ; Deling WU ; Hongsu ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):148-156
ObjectiveTo establish a rapid analytical method for identifying the differential components in Poria cocos medicinal materials based on ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Orbitrap-MS), combined with mass defect filtering(MDF) and molecular network integration techniques. MethodsUPLC-Q-Orbitrap-MS was used for MS data acquisition and identification of P. cocos medicinal materials, with the help of MDF for the study of cleavage behavior and structural identification of triterpenoids. According to the similarity of MS/MS fragmentation patterns of each component, global natural product social molecular network(GNPS) was established, and Cytoscape 3.6.1 was used to screen molecular clusters with similar structures and the the structure of main compound classes were identified and confirmed. Multivariate statistical analyses such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to screen the differential components of the five P. cocos medicinal materials with the variable importance in the projection(VIP) value>1 and P<0.05 as the criteria. ResultsA total of 66 compounds were identified by database comparison, 8 compounds were newly identified by MDF, 28 compounds were newly identified by GNPS, and a total of 102 chemical compounds were identified, including 43 triterpenoids, 16 saccharides, 26 amino acids and peptides, 3 nucleosides, and 14 other compounds. Triterpenoids were predominant in Poriae Cutis and wild Fushen, amino acids and peptides were the most abundant in Poria and cultivated Fushen, carbohydrates were the most abundant in Poriae Cutis. Type Ⅰ and Ⅱ triterpenoids had higher amounts in Poria and cultivated Fushen, type Ⅲ triterpenoids were more abundant in Poriae Cutis, all four types of triterpenoids were higher in Fushenmu, and type Ⅰ, Ⅱ, and Ⅳ triterpenoids were higher in wild Fushen. A total of 12 common differential chemical constituents were screened, including serine, guanosine, gallic acid, 2-octenal, maltotriose, trametenolic acid, dehydroeburicoic acid, dehydrotrametenolic acid, poricoic acid A, poricoic acid B, poricoic acid E and G, but the relative contents of them varied significantly among different medicinal materials. ConclusionAmong the five P. cocos medicinal materials, the types of constituents are generally similar, but their relative contents differed significantly among these medicinal materials, especially in the distribution of triterpenoids. The integration of UPLC-Q-Orbitrap-MS, MDF and GNPS can provide a reference for the rapid qualitative analysis of other Chinese medicines.
5.History, Experience, Opportunities, and Challenges in Esophageal Cancer Prevention and Treatment in Linxian, Henan Province, A High Incidence Area for Esophageal Cancer
Lidong WANG ; Xiaoqian ZHANG ; Xin SONG ; Xueke ZHAO ; Duo YOU ; Lingling LEI ; Ruihua XU ; Jin HUANG ; Wenli HAN ; Ran WANG ; Qide BAO ; Aifang JI ; Lei MA ; Shegan GAO
Cancer Research on Prevention and Treatment 2025;52(4):251-255
Linxian County in Henan Province, Northern China is known as the region with the highest incidence and mortality rate of esophageal cancer worldwide. Since 1959, the Henan medical team has conducted field work on esophageal cancer prevention and treatment in Linxian. Through three generations of effort exerted by oncologists over 65 years of research on esophageal cancer prevention and treatment in Linxian, the incidence rate of esophageal squamous cell carcinoma in this area has dropped by nearly 50%, and the 5-year survival rate has increased to 40%, reaching the international leading
6.Components and Brain-protective Effect of Chuanxiong Rhizoma-Paeoniae Radix Rubra in Improving Ischemic Stroke Based on UPLC-Q-TOF-MS
Qizhong JIN ; Jie ZHANG ; Lijuan XIU ; Fan XU ; Lei WANG ; Ning WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):20-29
ObjectiveTo investigate the chemical constituents of Chuanxiong Rhizoma-Paeoniae Radix Rubra(CRPRR) that cross the blood-brain barrier in rats with ischemic stroke, their brain-protective effects, and their impact on inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-18 (IL-18) based on ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and pharmacodynamic experiments. MethodsA focal cerebral ischemia-reperfusion injury model was established in rats via the middle cerebral artery occlusion/reperfusion (MCAO/R) method using intraluminal suture. Neurological function was evaluated using behavioral scoring. UPLC-Q-TOF-MS was employed to identify the chemical constituents of CRPRR that crossed the blood-brain barrier and entered the cerebrospinal fluid in MCAO/R model rats. Male Sprague-Dawley rats were randomly divided into six groups: sham operation group, model group, low-, medium-, and high-dose CRPRR groups (1.35, 2.7, 5.4 g·kg-1, respectively), and an edaravone group (5 mg·kg-1), with 12 rats in each group. The sham and model groups received normal saline, while the treatment groups received the respective doses of CRPRR once daily by gavage for three consecutive weeks. The brain-protective effects of CRPRR were assessed using the Longa five-point scoring method, open field test, Morris water maze, 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin (HE) staining, and transmission electron microscopy. ResultsNine chemical constituents were identified in the cerebrospinal fluid containing CRPRR, namely paeoniflorin, senkyunolide F, senkyunolide G, paeonimetabolin Ⅰ, paeoniflorin derivative, senkyunolide H, benzoylpaeoniflorin, senkyunolide A, and ligustilide. Animal experiment results showed that compared with the sham operation group, the model group exhibited disordered neuronal arrangement, severe vacuolation, nuclear pyknosis, and evident mitochondrial swelling. Chromatin aggregation and peripheralization were also observed. Neurological scores and the number of crossings in the central region were significantly increased (P<0.01), while platform crossings were significantly decreased (P<0.01), and clear infarct areas were present (P<0.01). Serum levels and protein expression of TNF-α, IL-1β, and IL-18 were significantly elevated (P<0.01). Compared with the model group, all dose groups of CRPRR showed marked improvement in neuronal morphology which was close to the normal level, with mitochondrial swelling alleviated and chromatin distribution more uniform. The medium- and high-dose groups significantly reduced neurological scores (P<0.01), while the low-, medium-, and high-dose groups significantly reduced the number of central crossings (P<0.01) and infarct volume (P<0.01), and decreased TNF-α, IL-1β, and IL-18 levels (P<0.05, P<0.01) compared with the model group. Furthermore, the medium- and high-dose groups significantly reduced TNF-α protein expression (P<0.05,P<0.01), and the high-dose group significantly reduced IL-1β and IL-18 protein expression (P<0.01). ConclusionThis study confirmed that CRPRR improves neurological function and alleviates brain tissue damage in MCAO/R rats. Its mechanism may be associated with the downregulation of inflammatory factors TNF-α, IL-1β, and IL-18, as well as the presence of nine active chemical constituents in cerebrospinal fluid, namely paeoniflorin, senkyunolide F, senkyunolide G, paeonimetabolin Ⅰ, paeoniflorin derivative, senkyunolide H, benzoylpaeoniflorin, senkyunolide A, and ligustilide, which are closely related to their brain-protective effects.
7.Components and Brain-protective Effect of Chuanxiong Rhizoma-Paeoniae Radix Rubra in Improving Ischemic Stroke Based on UPLC-Q-TOF-MS
Qizhong JIN ; Jie ZHANG ; Lijuan XIU ; Fan XU ; Lei WANG ; Ning WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):20-29
ObjectiveTo investigate the chemical constituents of Chuanxiong Rhizoma-Paeoniae Radix Rubra(CRPRR) that cross the blood-brain barrier in rats with ischemic stroke, their brain-protective effects, and their impact on inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-18 (IL-18) based on ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and pharmacodynamic experiments. MethodsA focal cerebral ischemia-reperfusion injury model was established in rats via the middle cerebral artery occlusion/reperfusion (MCAO/R) method using intraluminal suture. Neurological function was evaluated using behavioral scoring. UPLC-Q-TOF-MS was employed to identify the chemical constituents of CRPRR that crossed the blood-brain barrier and entered the cerebrospinal fluid in MCAO/R model rats. Male Sprague-Dawley rats were randomly divided into six groups: sham operation group, model group, low-, medium-, and high-dose CRPRR groups (1.35, 2.7, 5.4 g·kg-1, respectively), and an edaravone group (5 mg·kg-1), with 12 rats in each group. The sham and model groups received normal saline, while the treatment groups received the respective doses of CRPRR once daily by gavage for three consecutive weeks. The brain-protective effects of CRPRR were assessed using the Longa five-point scoring method, open field test, Morris water maze, 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin (HE) staining, and transmission electron microscopy. ResultsNine chemical constituents were identified in the cerebrospinal fluid containing CRPRR, namely paeoniflorin, senkyunolide F, senkyunolide G, paeonimetabolin Ⅰ, paeoniflorin derivative, senkyunolide H, benzoylpaeoniflorin, senkyunolide A, and ligustilide. Animal experiment results showed that compared with the sham operation group, the model group exhibited disordered neuronal arrangement, severe vacuolation, nuclear pyknosis, and evident mitochondrial swelling. Chromatin aggregation and peripheralization were also observed. Neurological scores and the number of crossings in the central region were significantly increased (P<0.01), while platform crossings were significantly decreased (P<0.01), and clear infarct areas were present (P<0.01). Serum levels and protein expression of TNF-α, IL-1β, and IL-18 were significantly elevated (P<0.01). Compared with the model group, all dose groups of CRPRR showed marked improvement in neuronal morphology which was close to the normal level, with mitochondrial swelling alleviated and chromatin distribution more uniform. The medium- and high-dose groups significantly reduced neurological scores (P<0.01), while the low-, medium-, and high-dose groups significantly reduced the number of central crossings (P<0.01) and infarct volume (P<0.01), and decreased TNF-α, IL-1β, and IL-18 levels (P<0.05, P<0.01) compared with the model group. Furthermore, the medium- and high-dose groups significantly reduced TNF-α protein expression (P<0.05,P<0.01), and the high-dose group significantly reduced IL-1β and IL-18 protein expression (P<0.01). ConclusionThis study confirmed that CRPRR improves neurological function and alleviates brain tissue damage in MCAO/R rats. Its mechanism may be associated with the downregulation of inflammatory factors TNF-α, IL-1β, and IL-18, as well as the presence of nine active chemical constituents in cerebrospinal fluid, namely paeoniflorin, senkyunolide F, senkyunolide G, paeonimetabolin Ⅰ, paeoniflorin derivative, senkyunolide H, benzoylpaeoniflorin, senkyunolide A, and ligustilide, which are closely related to their brain-protective effects.
8.Role and mechanism of platelet-derived growth factor BB in repair of growth plate injury
Hongcheng PENG ; Guoxuan PENG ; Anyi LEI ; Yuan LIN ; Hong SUN ; Xu NING ; Xianwen SHANG ; Jin DENG ; Mingzhi HUANG
Chinese Journal of Tissue Engineering Research 2025;29(7):1497-1503
BACKGROUND:In the initial stage of growth plate injury inflammation,platelet-derived growth factor BB promotes the repair of growth plate injury by promoting mesenchymal progenitor cell infiltration,chondrogenesis,osteogenic response,and regulating bone remodeling. OBJECTIVE:To elucidate the action mechanism of platelet-derived growth factor BB after growth plate injury. METHODS:PubMed,VIP,WanFang,and CNKI databases were used as the literature sources.The search terms were"growth plate injury,bone bridge,platelet-derived growth factor BB,repair"in English and Chinese.Finally,66 articles were screened for this review. RESULTS AND CONCLUSION:Growth plate injury experienced early inflammation,vascular reconstruction,fibroossification,structural remodeling and other pathological processes,accompanied by the crosstalk of chondrocytes,vascular endothelial cells,stem cells,osteoblasts,osteoclasts and other cells.Platelet-derived growth factor BB,as an important factor in the early inflammatory response of injury,regulates the injury repair process by mediating a variety of cellular inflammatory responses.Targeting the inflammatory stimulation mediated by platelet-derived growth factor BB may delay the bone bridge formation process by improving the functional activities of osteoclasts,osteoblasts,and chondrocytes,so as to achieve the injury repair of growth plate.Platelet-derived growth factor BB plays an important role in angiogenesis and bone repair tissue formation at the injured site of growth plate and intrachondral bone lengthening function of uninjured growth plate.Inhibition of the coupling effect between angiogenesis initiated by platelet-derived growth factor BB and intrachondral bone formation may achieve the repair of growth plate injury.
9.Clinical observation of 450 nm blue laser vaporization for the treatment of benign prostatic hyperplasia in frail elderly patients
Guowei CHEN ; Zunke XIE ; Lei SHI ; Xuejing GUO ; Zhe JIN ; Lianchao JIN
Journal of Modern Urology 2025;30(6):508-512
Objective: To investigate the clinical efficacy of transurethral 450 nm blue laser vaporization of prostate (BVP) and transurethral plasmakinetic resection of the prostate (PKRP) in the treatment of frail elderly patients with benign prostatic hyperplasia (BPH). Methods: A retrospective analysis was conducted on the clinical data of 62 frail elderly BPH patients undergoing BVP (n=32) or PKRP (n=30) in our hospital during Jan.2023 and Jun.2024.The two groups were compared in terms of postoperative hemoglobin drop, operation time, hospital stay, catheter indwelling time, bladder irrigation time, preoperative and postoperative 3-month postvoid residual (PVR), maximum urinary flow rate (Qmax), international prostate symptom score (IPSS), quality of life score (QoL), and postoperative complications. Results: The postoperative hemoglobin drop was lower in the BVP group than in the PKRP group [(1.62±1.04) g/L vs.(7.37±2.37) g/L, P<0.001].The operation time [(24.53±7.52) min vs. (47.77±11.12) min], hospital stay [(2.78±1.62) d vs. (8.13±0.82) d], catheter indwelling time [(1.84±0.99) d vs. (5.40±0.81) d], and bladder irrigation time [(7.37±2.35) h vs. (51.60±19.72) h] were significantly shorter in the BVP group than in the PKRP group (all P<0.001).At 3 months postoperatively, both groups showed significant improvements in IPSS, QoL, Qmax, and PVR compared to preoperative levels (P<0.05), but there were no significant differences between the two groups (P>0.05).The overall incidence of early postoperative complications in the BVP group was lower than that in PKRP group (18.75% vs. 43.33%, P<0.05).After 3 months of follow-up, there was no significant difference in the incidence of complications between the BVP group and PKRP group(3.13% vs. 13.33%, P=0.14). Conclusion: BVP for the treatment of frail elderly BPH patients is safe and reliable, associated with minimal bleeding, short operation time, catheterization time and hospital stay, and there is no need to discontinue anticoagulant drugs.
10.En Bloc Resection of Thoracic and Upper Lumbar Spinal Tumors Using a Novel Rotation-Reversion Technique through Posterior-Only Approach
Ming LU ; Changhe HOU ; Wei CHEN ; Zixiong LEI ; Shuangwu DAI ; Shaohua DU ; Qinglin JIN ; Dadi JIN ; Haomiao LI
Clinics in Orthopedic Surgery 2025;17(2):346-353
Background:
En bloc resection is recommended for the treatment of malignant and aggressive benign spinal tumors; however, it often requires a combined anterior-posterior approach, which is usually accompanied by longer surgical duration, increased blood loss, larger trauma, and surgical complexity. The present study describes a novel rotation-reversion technique for en bloc resection of the thoracic and upper lumbar spinal tumors using a posterior-only approach and evaluate its safety and efficacy.
Methods:
Thirteen patients with thoracic and upper lumbar (L1-L3) spinal tumors were treated with en bloc resection using the rotation-reversion technique through a posterior-only approach at our institution between 2015 and 2023. The clinical characteristics and surgical results of the patients were reviewed and analyzed.
Results:
Posterior-only en bloc resection was performed successfully in all 13 patients using the rotation-reversion technique, with a median follow-up of 30.4 months (range, 6–74 months). The average maximum size of these 13 tumors was 5.7 × 5.8 × 4.8 cm.The mean operation time and blood loss were 458.5 minutes (range, 220–880 minutes) and 3,146.2 mL (range, 1,000–6,000 mL), respectively, with 4 of the 13 patients (30.8%) experiencing perioperative complications. Negative margins were achieved in all the 13 patients (100%). One patient experienced local recurrence (7.7%) and 1 patient experienced instrumentation failures. Interbody fusion was confirmed in 11 of the 13 patients (84.6%), with a median fusion time of 6.9 months. All of the 13 patients experienced varying degrees of mild postoperative neurological deficits owing to resection of the nerve roots affected by tumor invasion of the vertebrae. No vessel injury or postoperative neurological paralysis occurred, except 1 patient who had been completely paralyzed before surgery.
Conclusions
The rotation-reversion technique is an effective procedure for en bloc resection of selected thoracic and upper lumbar spinal tumors through the posterior-only approach.

Result Analysis
Print
Save
E-mail