1.Role and mechanism of platelet-derived growth factor BB in repair of growth plate injury
Hongcheng PENG ; Guoxuan PENG ; Anyi LEI ; Yuan LIN ; Hong SUN ; Xu NING ; Xianwen SHANG ; Jin DENG ; Mingzhi HUANG
Chinese Journal of Tissue Engineering Research 2025;29(7):1497-1503
BACKGROUND:In the initial stage of growth plate injury inflammation,platelet-derived growth factor BB promotes the repair of growth plate injury by promoting mesenchymal progenitor cell infiltration,chondrogenesis,osteogenic response,and regulating bone remodeling. OBJECTIVE:To elucidate the action mechanism of platelet-derived growth factor BB after growth plate injury. METHODS:PubMed,VIP,WanFang,and CNKI databases were used as the literature sources.The search terms were"growth plate injury,bone bridge,platelet-derived growth factor BB,repair"in English and Chinese.Finally,66 articles were screened for this review. RESULTS AND CONCLUSION:Growth plate injury experienced early inflammation,vascular reconstruction,fibroossification,structural remodeling and other pathological processes,accompanied by the crosstalk of chondrocytes,vascular endothelial cells,stem cells,osteoblasts,osteoclasts and other cells.Platelet-derived growth factor BB,as an important factor in the early inflammatory response of injury,regulates the injury repair process by mediating a variety of cellular inflammatory responses.Targeting the inflammatory stimulation mediated by platelet-derived growth factor BB may delay the bone bridge formation process by improving the functional activities of osteoclasts,osteoblasts,and chondrocytes,so as to achieve the injury repair of growth plate.Platelet-derived growth factor BB plays an important role in angiogenesis and bone repair tissue formation at the injured site of growth plate and intrachondral bone lengthening function of uninjured growth plate.Inhibition of the coupling effect between angiogenesis initiated by platelet-derived growth factor BB and intrachondral bone formation may achieve the repair of growth plate injury.
2.Bear Bile Powder Ameliorates LPS-Induced Acute Lung Injury by Inhibiting CD14 Pathway and Improving Intestinal Flora: Exploration of "Fei (Lung)-Dachang (Large Intestine) Interaction" Theory.
Long CHENG ; Hui-Ling TIAN ; Hong-Yuan LEI ; Ying-Zhou WANG ; Ma-Jing JIAO ; Yun-Hui LIANG ; Zhi-Zheng WU ; Xu-Kun DENG ; Yong-Shen REN
Chinese journal of integrative medicine 2025;31(9):821-829
OBJECTIVE:
To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism.
METHODS:
The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1β in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS).
RESULTS:
UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05).
CONCLUSIONS
BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.
Animals
;
Acute Lung Injury/pathology*
;
Lipopolysaccharides
;
Ursidae
;
Gastrointestinal Microbiome/drug effects*
;
Bile/chemistry*
;
Lipopolysaccharide Receptors/metabolism*
;
Powders
;
Male
;
Lung/drug effects*
;
Mice
;
Peroxidase/metabolism*
;
Signal Transduction/drug effects*
;
Cytokines/metabolism*
3.Dimeric natural product panepocyclinol A inhibits STAT3 via di-covalent modification.
Li LI ; Yuezhou WANG ; Yiqiu WANG ; Xiaoyang LI ; Qihong DENG ; Fei GAO ; Wenhua LIAN ; Yunzhan LI ; Fu GUI ; Yanling WEI ; Su-Jie ZHU ; Cai-Hong YUN ; Lei ZHANG ; Zhiyu HU ; Qingyan XU ; Xiaobing WU ; Lanfen CHEN ; Dawang ZHOU ; Jianming ZHANG ; Fei XIA ; Xianming DENG
Acta Pharmaceutica Sinica B 2025;15(1):409-423
Homo- or heterodimeric compounds that affect dimeric protein function through interaction between monomeric moieties and protein subunits can serve as valuable sources of potent and selective drug candidates. Here, we screened an in-house dimeric natural product collection, and panepocyclinol A (PecA) emerged as a selective and potent STAT3 inhibitor with profound anti-tumor efficacy. Through cross-linking C712/C718 residues in separate STAT3 monomers with two distinct Michael receptors, PecA inhibits STAT3 DNA binding affinity and transcription activity. Molecular dynamics simulation reveals the key conformation changes of STAT3 dimers upon the di-covalent binding with PecA that abolishes its DNA interactions. Furthermore, PecA exhibits high efficacy against anaplastic large T cell lymphoma in vitro and in vivo, especially those with constitutively activated STAT3 or STAT3Y640F. In summary, our study describes a distinct and effective di-covalent modification for the dimeric compound PecA to disrupt STAT3 function.
4.Propofol Promotes Anesthesia Through the Activation of Centrally-Projecting Edinger-Westphal Nucleus Urocortin 1-Positive Neurons.
Jing HUANG ; Yiwen HU ; Sheng JING ; Fuhai BAI ; Zonghong LONG ; Zhuoxi WU ; Liang FANG ; Lei CAO ; Youliang DENG ; Xiaohang BAO ; Hong LI
Neuroscience Bulletin 2025;41(6):1109-1114
5.Expert consensus on the diagnosis and treatment of cemental tear.
Ye LIANG ; Hongrui LIU ; Chengjia XIE ; Yang YU ; Jinlong SHAO ; Chunxu LV ; Wenyan KANG ; Fuhua YAN ; Yaping PAN ; Faming CHEN ; Yan XU ; Zuomin WANG ; Yao SUN ; Ang LI ; Lili CHEN ; Qingxian LUAN ; Chuanjiang ZHAO ; Zhengguo CAO ; Yi LIU ; Jiang SUN ; Zhongchen SONG ; Lei ZHAO ; Li LIN ; Peihui DING ; Weilian SUN ; Jun WANG ; Jiang LIN ; Guangxun ZHU ; Qi ZHANG ; Lijun LUO ; Jiayin DENG ; Yihuai PAN ; Jin ZHAO ; Aimei SONG ; Hongmei GUO ; Jin ZHANG ; Pingping CUI ; Song GE ; Rui ZHANG ; Xiuyun REN ; Shengbin HUANG ; Xi WEI ; Lihong QIU ; Jing DENG ; Keqing PAN ; Dandan MA ; Hongyu ZHAO ; Dong CHEN ; Liangjun ZHONG ; Gang DING ; Wu CHEN ; Quanchen XU ; Xiaoyu SUN ; Lingqian DU ; Ling LI ; Yijia WANG ; Xiaoyuan LI ; Qiang CHEN ; Hui WANG ; Zheng ZHANG ; Mengmeng LIU ; Chengfei ZHANG ; Xuedong ZHOU ; Shaohua GE
International Journal of Oral Science 2025;17(1):61-61
Cemental tear is a rare and indetectable condition unless obvious clinical signs present with the involvement of surrounding periodontal and periapical tissues. Due to its clinical manifestations similar to common dental issues, such as vertical root fracture, primary endodontic diseases, and periodontal diseases, as well as the low awareness of cemental tear for clinicians, misdiagnosis often occurs. The critical principle for cemental tear treatment is to remove torn fragments, and overlooking fragments leads to futile therapy, which could deteriorate the conditions of the affected teeth. Therefore, accurate diagnosis and subsequent appropriate interventions are vital for managing cemental tear. Novel diagnostic tools, including cone-beam computed tomography (CBCT), microscopes, and enamel matrix derivatives, have improved early detection and management, enhancing tooth retention. The implementation of standardized diagnostic criteria and treatment protocols, combined with improved clinical awareness among dental professionals, serves to mitigate risks of diagnostic errors and suboptimal therapeutic interventions. This expert consensus reviewed the epidemiology, pathogenesis, potential predisposing factors, clinical manifestations, diagnosis, differential diagnosis, treatment, and prognosis of cemental tear, aiming to provide a clinical guideline and facilitate clinicians to have a better understanding of cemental tear.
Humans
;
Dental Cementum/injuries*
;
Consensus
;
Diagnosis, Differential
;
Cone-Beam Computed Tomography
;
Tooth Fractures/therapy*
6.Baicalein attenuates lipopolysaccharide-induced myocardial injury by inhibiting ferroptosis via miR-299b-5p/HIF1-α pathway.
Wen-Yan ZHOU ; Jian-Kui DU ; Hong-Hong LIU ; Lei DENG ; Kai MA ; Jian XIAO ; Sheng ZHANG ; Chang-Nan WANG
Journal of Integrative Medicine 2025;23(5):560-575
OBJECTIVE:
Baicalein has been reported to have wide therapeutic effects that act through its anti-inflammatory activity. This study examines the effect and mechanism of baicalein on sepsis-induced cardiomyopathy (SIC).
METHODS:
A thorough screening of a small library of natural products, comprising 100 diverse compounds, was conducted to identify the most effective drug against lipopolysaccharide (LPS)-treated H9C2 cardiomyocytes. The core target proteins and their associated signaling pathways involved in baicalein's efficacy against LPS-induced myocardial injury were predicted by network pharmacology.
RESULTS:
Baicalein was identified as the most potent protective agent in LPS-exposed H9C2 cardiomyocytes. It exhibited a dose-dependent inhibitory effect on cell injury and inflammation. In the LPS-induced septic mouse model, baicalein demonstrated a significant capacity to mitigate LPS-triggered myocardial deficits, inflammatory responses, and ferroptosis. Network pharmacological analysis and experimental confirmation suggested that hypoxia-inducible factor 1 subunit α (HIF1-α) is likely to be the crucial factor in mediating the impact of baicalein against LPS-induced myocardial ferroptosis and injury. By combining microRNA (miRNA) screening in LPS-treated myocardium with miRNA prediction targeting HIF1-α, we found that miR-299b-5p may serve as a regulator of HIF1-α. The reduction in miR-299b-5p levels in LPS-treated myocardium, compared to the control group, was reversed by baicalein treatment. The reverse transcription quantitative polymerase chain reaction, Western blotting, and dual-luciferase reporter gene analyses together identified HIF1-α as the target of miR-299b-5p in cardiomyocytes.
CONCLUSION
Baicalein mitigates SIC at the miRNA level, suggesting the therapeutic potential of it in treating SIC through the regulation of miR-299b-5p/HIF1-α/ferroptosis pathway. Please cite this article as: Zhou WY, Du JK, Liu HH, Deng L, Ma K, Xiao J, Zhang S, Wang CN. Baicalein attenuates lipopolysaccharide-induced myocardial injury by inhibiting ferroptosis via miR-299b-5p/HIF1-α pathway. J Integr Med. 2025; 23(5):560-575.
Flavanones/pharmacology*
;
Animals
;
MicroRNAs/genetics*
;
Lipopolysaccharides
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Ferroptosis/drug effects*
;
Mice
;
Myocytes, Cardiac/metabolism*
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Mice, Inbred C57BL
;
Cardiomyopathies/etiology*
;
Cell Line
;
Sepsis/complications*
7.Association of Cytokines with Clinical Indicators in Patients with Drug-Induced Liver Injury
Hua Wei CAO ; Ting Ting JIANG ; Ge SHEN ; Wen DENG ; Yu Shi WANG ; Yu Zi ZHANG ; Xin Xin LI ; Yao LU ; Lu ZHANG ; Yu Ru LIU ; Min CHANG ; Ling Shu WU ; Jiao Yuan GAO ; Xiao Hong HAO ; Xue Xiao CHEN ; Ping Lei HU ; Jiao Meng XU ; Wei YI ; Yao XIE ; Hui Ming LI
Biomedical and Environmental Sciences 2024;37(5):494-502
Objective To explore characteristics of clinical parameters and cytokines in patients with drug-induced liver injury(DILI)caused by different drugs and their correlation with clinical indicators. Method The study was conducted on patients who were up to Review of Uncertainties in Confidence Assessment for Medical Tests(RUCAM)scoring criteria and clinically diagnosed with DILI.Based on Chinese herbal medicine,cardiovascular drugs,non-steroidal anti-inflammatory drugs(NSAIDs),anti-infective drugs,and other drugs,patients were divided into five groups.Cytokines were measured by Luminex technology.Baseline characteristics of clinical biochemical indicators and cytokines in DILI patients and their correlation were analyzed. Results 73 patients were enrolled.Age among five groups was statistically different(P=0.032).Alanine aminotransferase(ALT)(P=0.033)and aspartate aminotransferase(AST)(P=0.007)in NSAIDs group were higher than those in chinese herbal medicine group.Interleukin-6(IL-6)and tumor necrosis factor alpha(TNF-α)in patients with Chinese herbal medicine(IL-6:P<0.001;TNF-α:P<0.001)and cardiovascular medicine(IL-6:P=0.020;TNF-α:P=0.001)were lower than those in NSAIDs group.There was a positive correlation between ALT(r=0.697,P=0.025),AST(r=0.721,P=0.019),and IL-6 in NSAIDs group. Conclusion Older age may be more prone to DILI.Patients with NSAIDs have more severe liver damage in early stages of DILI,TNF-α and IL-6 may partake the inflammatory process of DILI.
8.Pathological Mechanism of Neuronal Autophagy Flow Disturbance Caused by NSF ATPase Inactivation After Cerebral Ischemia
Qian LEI ; Yi-Hao DENG ; Hong-Yun HE
Progress in Biochemistry and Biophysics 2024;51(5):1034-1042
Cerebral ischemic stroke is an acute cerebrovascular disease caused by cerebral vascular occlusion, and it is associated with high incidence, disability, and mortality rates. Studies have found that excessive or insufficient autophagy can lead to cellular damage. Autophagy consists of autophagosome formation and maturation, autophagosome-lysosome fusion, degradation and clearance of autophagic substrates within autolysosomes, and these processes collectively constitute autophagic flux. Research has revealed that cerebral ischemia can induce impaired fusion between autophagosomes and lysosomes, resulting in autophagic flux impairment. Intracellular membrane fusion is mediated by three core components: N-ethylmaleimide sensitive factor (NSF) ATPase, soluble NSF attachment protein (SNAP), and soluble NSF attachment protein receptors (SNAREs). SNAREs, after mediating fusion between autophagosomes and lysosomes, remain in an inactive complex state on the autolysosomal membrane, requiring NSF reactivation into monomers to perform subsequent rounds of membrane fusion-mediated functions. NSF is the sole ATPase capable of reactivating SNAREs. Recent studies have shown that cerebral ischemia significantly inhibits NSF ATPase activity, reducing its reactivation of SNAREs. This may be a pathological mechanism for impaired fusion between autophagosomes and lysosomes, leading to neuronal autophagic flux impairment. This article discusses the pathological mechanisms of NSF ATPase inactivation, including SNAREs dysregulation, impaired fusion between autophagosomes and lysosomes, and insufficient transport of proteolytic enzymes to lysosomes, and explores approaches to improve neuronal autophagic flux through NSF ATPase reactivation. It provides references for stroke treatment improvement and points out directions for further research.
9.Overexpression of Hsp70 Promoted the Expression of Glycolysis-related Genes in C2C12 Cells
Lei QIN ; Ke XU ; Chun-Guang ZHANG ; Han CHU ; Shi-Fan DENG ; Jian-Bin ZHANG ; Hua YANG ; Liang HONG ; Gui-Feng ZHANG ; Chao SUN ; Lei PU
Chinese Journal of Biochemistry and Molecular Biology 2024;40(10):1417-1425
The aim of this study was to investigate the impact of overexpressing 70-kD heat shock pro-teins(Hsp70)on glycolysis in C2C12 cells during myogenesis and adipogenesis.Using C2C12 cells as the research material,adenovirus was used to overexpress the Hsp70 gene,and changes in the expression of glycolytic genes were detected using fluorescence quantitative PCR and Western blotting techniques.The study indicated that during C2C12 cell myogenic differentiation,the expression trend of the Hsp70 gene was consistent with that of Gsk3β,Pkm,Prkag3,Pfkm,and Hk-2 genes,suggesting a relationship between Hsp70 and the glycolytic pathway during myogenic differentiation.Overexpression of Hsp70 in the later stages of myogenic differentiation significantly upregulated the expression of Gsk3β,Pkm,Prk-ag3,and Pfkm genes(P<0.05),with no significant impact on Hk-2 gene expression(P>0.05).Dur-ing C2C12 cell adipogenic induction,the expression trend of the Hsp70 gene was similar to that of Gsk3β,Pkm,Prkag3,Pfkm,and Hk-2 genes,indicating a relationship between Hsp70 and the glycolytic path-way during adipogenic induction.Following Hsp70 overexpression,in the later stages of adipogenic in-duction,the number of lipid droplets was significantly higher compared to the control group,with a sig-nificant upregulation of Gsk3β,Pkm,Prkag3,and Pfkm gene expression(P<0.05),while Hk-2 gene expression was not significantly affected(P>0.05).In conclusion,Hsp70 in C2C12 cells in myogenic and adipogenic states promoted the breakdown of glycogen into 6-phospho-glucose,thereby enhancing the glycolytic pathway,providing insights into the functional role of the Hsp70 gene in glycolysis in C2C12 cells.
10.Study on equivalence of biological activity of insulin glargine by quantitative immunofluorescence assay and insulin bioassay
Yi-Min GAO ; Hong-Mei ZHANG ; Kai-Yong HE ; Deng-Ke YIN ; Bei SUN ; Lei-Ming XU
Chinese Pharmacological Bulletin 2024;40(11):2193-2199
Aim To establish a quantitative immunofluorescent bioactivity assay(ICW)for insulin glargine based on CHO-IN-SRB 1284 transgenic cells,and to study its equivalence with in-sulin bioassay of Ch.P.Methods The cells were diluted 25 times with 1.5 × 108 L-1 cell density plates and 1 500 μmol·L-1 insulin glargine,and then diluted with a 3-fold gradient se-ries.The cells were stimulated in microporous plates for 20 min.After fixation,permeation and antibody incubation.Quantitative immunofluorescence biological activity was detected by odyssey two-color infrared fluorescence imaging system.Results There was a good dose-effect relationship between the concentration of insulin glargine in ICW and its relative potency.The method had good specificity,and the relative accuracy,intermediate preci-sion and linearity met the requirements.The relative deviation of biological activity results of 7 batches of insulin glargine samples measured by the two methods was less than 10%.The results were analyzed by SPSS and SAS software,which showed that the methods were correlated and equivalent.Conclusions The quantitative immunofluorescence assay for the biological activity of insulin glargine can be established.The method has good spe-cificity,high accuracy and precision,and has correlation and e-quivalent with biotiter assay,which can be applied to in vitro ef-ficacy evaluation and quality control of insulin glargine.

Result Analysis
Print
Save
E-mail