1.Hub biomarkers and their clinical relevance in glycometabolic disorders: A comprehensive bioinformatics and machine learning approach.
Liping XIANG ; Bing ZHOU ; Yunchen LUO ; Hanqi BI ; Yan LU ; Jian ZHOU
Chinese Medical Journal 2025;138(16):2016-2027
BACKGROUND:
Gluconeogenesis is a critical metabolic pathway for maintaining glucose homeostasis, and its dysregulation can lead to glycometabolic disorders. This study aimed to identify hub biomarkers of these disorders to provide a theoretical foundation for enhancing diagnosis and treatment.
METHODS:
Gene expression profiles from liver tissues of three well-characterized gluconeogenesis mouse models were analyzed to identify commonly differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA), machine learning techniques, and diagnostic tests on transcriptome data from publicly available datasets of type 2 diabetes mellitus (T2DM) patients were employed to assess the clinical relevance of these DEGs. Subsequently, we identified hub biomarkers associated with gluconeogenesis-related glycometabolic disorders, investigated potential correlations with immune cell types, and validated expression using quantitative polymerase chain reaction in the mouse models.
RESULTS:
Only a few common DEGs were observed in gluconeogenesis-related glycometabolic disorders across different contributing factors. However, these DEGs were consistently associated with cytokine regulation and oxidative stress (OS). Enrichment analysis highlighted significant alterations in terms related to cytokines and OS. Importantly, osteomodulin ( OMD ), apolipoprotein A4 ( APOA4 ), and insulin like growth factor binding protein 6 ( IGFBP6 ) were identified with potential clinical significance in T2DM patients. These genes demonstrated robust diagnostic performance in T2DM cohorts and were positively correlated with resting dendritic cells.
CONCLUSIONS
Gluconeogenesis-related glycometabolic disorders exhibit considerable heterogeneity, yet changes in cytokine regulation and OS are universally present. OMD , APOA4 , and IGFBP6 may serve as hub biomarkers for gluconeogenesis-related glycometabolic disorders.
Machine Learning
;
Humans
;
Computational Biology/methods*
;
Biomarkers/metabolism*
;
Diabetes Mellitus, Type 2/genetics*
;
Animals
;
Mice
;
Gluconeogenesis/physiology*
;
Gene Expression Profiling
;
Transcriptome/genetics*
;
Gene Regulatory Networks/genetics*
;
Clinical Relevance
2.Research on emotion recognition methods based on multi-modal physiological signal feature fusion.
Zhiwen ZHANG ; Naigong YU ; Yan BIAN ; Jinhan YAN
Journal of Biomedical Engineering 2025;42(1):17-23
Emotion classification and recognition is a crucial area in emotional computing. Physiological signals, such as electroencephalogram (EEG), provide an accurate reflection of emotions and are difficult to disguise. However, emotion recognition still faces challenges in single-modal signal feature extraction and multi-modal signal integration. This study collected EEG, electromyogram (EMG), and electrodermal activity (EDA) signals from participants under three emotional states: happiness, sadness, and fear. A feature-weighted fusion method was applied for integrating the signals, and both support vector machine (SVM) and extreme learning machine (ELM) were used for classification. The results showed that the classification accuracy was highest when the fusion weights were set to EEG 0.7, EMG 0.15, and EDA 0.15, achieving accuracy rates of 80.19% and 82.48% for SVM and ELM, respectively. These rates represented an improvement of 5.81% and 2.95% compared to using EEG alone. This study offers methodological support for emotion classification and recognition using multi-modal physiological signals.
Humans
;
Emotions/physiology*
;
Electroencephalography
;
Support Vector Machine
;
Electromyography
;
Signal Processing, Computer-Assisted
;
Galvanic Skin Response/physiology*
;
Machine Learning
;
Male
3.Research on intelligent fetal heart monitoring model based on deep active learning.
Bin QUAN ; Yajing HUANG ; Yanfang LI ; Qinqun CHEN ; Honglai ZHANG ; Li LI ; Guiqing LIU ; Hang WEI
Journal of Biomedical Engineering 2025;42(1):57-64
Cardiotocography (CTG) is a non-invasive and important tool for diagnosing fetal distress during pregnancy. To meet the needs of intelligent fetal heart monitoring based on deep learning, this paper proposes a TWD-MOAL deep active learning algorithm based on the three-way decision (TWD) theory and multi-objective optimization Active Learning (MOAL). During the training process of a convolutional neural network (CNN) classification model, the algorithm incorporates the TWD theory to select high-confidence samples as pseudo-labeled samples in a fine-grained batch processing mode, meanwhile low-confidence samples annotated by obstetrics experts were also considered. The TWD-MOAL algorithm proposed in this paper was validated on a dataset of 16 355 prenatal CTG records collected by our group. Experimental results showed that the algorithm proposed in this paper achieved an accuracy of 80.63% using only 40% of the labeled samples, and in terms of various indicators, it performed better than the existing active learning algorithms under other frameworks. The study has shown that the intelligent fetal heart monitoring model based on TWD-MOAL proposed in this paper is reasonable and feasible. The algorithm significantly reduces the time and cost of labeling by obstetric experts and effectively solves the problem of data imbalance in CTG signal data in clinic, which is of great significance for assisting obstetrician in interpretations CTG signals and realizing intelligence fetal monitoring.
Humans
;
Pregnancy
;
Female
;
Cardiotocography/methods*
;
Deep Learning
;
Neural Networks, Computer
;
Algorithms
;
Fetal Monitoring/methods*
;
Heart Rate, Fetal
;
Fetal Distress/diagnosis*
;
Fetal Heart/physiology*
4.A review of deep learning methods for non-contact heart rate measurement based on facial videos.
Shuyue GUAN ; Yimou LYU ; Yongchun LI ; Chengzhi XIA ; Lin QI ; Lisheng XU
Journal of Biomedical Engineering 2025;42(1):197-204
Heart rate is a crucial indicator of human health with significant physiological importance. Traditional contact methods for measuring heart rate, such as electrocardiograph or wristbands, may not always meet the need for convenient health monitoring. Remote photoplethysmography (rPPG) provides a non-contact method for measuring heart rate and other physiological indicators by analyzing blood volume pulse signals. This approach is non-invasive, does not require direct contact, and allows for long-term healthcare monitoring. Deep learning has emerged as a powerful tool for processing complex image and video data, and has been increasingly employed to extract heart rate signals remotely. This article reviewed the latest research advancements in rPPG-based heart rate measurement using deep learning, summarized available public datasets, and explored future research directions and potential advancements in non-contact heart rate measurement.
Humans
;
Deep Learning
;
Heart Rate/physiology*
;
Photoplethysmography/methods*
;
Video Recording
;
Face
;
Monitoring, Physiologic/methods*
;
Signal Processing, Computer-Assisted
5.Cross-session motor imagery-electroencephalography decoding with Riemannian spatial filtering and domain adaptation.
Lincong PAN ; Xinwei SUN ; Kun WANG ; Yupei CAO ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2025;42(2):272-279
Motor imagery (MI) is a mental process that can be recognized by electroencephalography (EEG) without actual movement. It has significant research value and application potential in the field of brain-computer interface (BCI) technology. To address the challenges posed by the non-stationary nature and low signal-to-noise ratio of MI-EEG signals, this study proposed a Riemannian spatial filtering and domain adaptation (RSFDA) method for improving the accuracy and efficiency of cross-session MI-BCI classification tasks. The approach addressed the issue of inconsistent data distribution between source and target domains through a multi-module collaborative framework, which enhanced the generalization capability of cross-session MI-EEG classification models. Comparative experiments were conducted on three public datasets to evaluate RSFDA against eight existing methods in terms of classification accuracy and computational efficiency. The experimental results demonstrated that RSFDA achieved an average classification accuracy of 79.37%, outperforming the state-of-the-art deep learning method Tensor-CSPNet (76.46%) by 2.91% ( P < 0.01). Furthermore, the proposed method showed significantly lower computational costs, requiring only approximately 3 minutes of average training time compared to Tensor-CSPNet's 25 minutes, representing a reduction of 22 minutes. These findings indicate that the RSFDA method demonstrates superior performance in cross-session MI-EEG classification tasks by effectively balancing accuracy and efficiency. However, its applicability in complex transfer learning scenarios remains to be further investigated.
Electroencephalography/methods*
;
Brain-Computer Interfaces
;
Humans
;
Imagination/physiology*
;
Signal Processing, Computer-Assisted
;
Movement/physiology*
;
Signal-To-Noise Ratio
;
Deep Learning
;
Algorithms
6.Multi-source adversarial adaptation with calibration for electroencephalogram-based classification of meditation and resting states.
Mingyu GOU ; Haolong YIN ; Tianzhen CHEN ; Fei CHENG ; Jiang DU ; Baoliang LYU ; Weilong ZHENG
Journal of Biomedical Engineering 2025;42(4):668-677
Meditation aims to guide individuals into a state of deep calm and focused attention, and in recent years, it has shown promising potential in the field of medical treatment. Numerous studies have demonstrated that electroencephalogram (EEG) patterns change during meditation, suggesting the feasibility of using deep learning techniques to monitor meditation states. However, significant inter-subject differences in EEG signals poses challenges to the performance of such monitoring systems. To address this issue, this study proposed a novel model-calibrated multi-source adversarial adaptation network (CMAAN). The model first trained multiple domain-adversarial neural networks in a pairwise manner between various source-domain individuals and the target-domain individual. These networks were then integrated through a calibration process using a small amount of labeled data from the target domain to enhance performance. We evaluated the proposed model on an EEG dataset collected from 18 subjects undergoing methamphetamine rehabilitation. The model achieved a classification accuracy of 73.09%. Additionally, based on the learned model, we analyzed the key EEG frequency bands and brain regions involved in the meditation process. The proposed multi-source domain adaptation framework improves both the performance and robustness of EEG-based meditation monitoring and holds great promise for applications in biomedical informatics and clinical practice.
Humans
;
Electroencephalography/methods*
;
Meditation
;
Calibration
;
Neural Networks, Computer
;
Brain/physiology*
;
Rest/physiology*
;
Deep Learning
;
Signal Processing, Computer-Assisted
7.Effect of 40 Hz pulsed magnetic field on mitochondrial dynamics and heart rate variability in dementia mice.
Lifan ZHANG ; Duyan GENG ; Guizhi XU ; Hongxia AN
Journal of Biomedical Engineering 2025;42(4):707-715
Alzheimer's disease (AD) is the most common degenerative disease of the nervous system. Studies have found that the 40 Hz pulsed magnetic field has the effect of improving cognitive ability in AD, but the mechanism of action is not clear. In this study, APP/PS1 double transgenic AD model mice were used as the research object, the water maze was used to group dementia, and 40 Hz/10 mT pulsed magnetic field stimulation was applied to AD model mice with different degrees of dementia. The behavioral indicators, mitochondrial samples of hippocampal CA1 region and electrocardiogram signals were collected from each group, and the effects of 40 Hz pulsed magnetic field on mouse behavior, mitochondrial kinetic indexes and heart rate variability (HRV) parameters were analyzed. The results showed that compared with the AD group, the loss of mitochondrial crest structure was alleviated and the mitochondrial dynamics related indexes were significantly improved in the AD + stimulated group ( P < 0.001), sympathetic nerve excitation and parasympathetic nerve inhibition were improved, and the spatial cognitive memory ability of mice was significantly improved ( P < 0.05). The preliminary results of this study show that 40 Hz pulsed magnetic field stimulation can improve the mitochondrial structure and mitochondrial kinetic homeostasis imbalance of AD mice, and significantly improve the autonomic neuromodulation ability and spatial cognition ability of AD mice, which lays a foundation for further exploring the mechanism of ultra-low frequency magnetic field in delaying the course of AD disease and realizing personalized neurofeedback therapy for AD.
Animals
;
Heart Rate/physiology*
;
Mice
;
Alzheimer Disease/therapy*
;
Mice, Transgenic
;
Mitochondrial Dynamics/radiation effects*
;
Magnetic Field Therapy/methods*
;
Magnetic Fields
;
Disease Models, Animal
;
Mitochondria
;
Male
;
Maze Learning
;
Cognition
;
Dementia/therapy*
8.Research progress in electroencephalogram-based brain age prediction.
Hongyue ZU ; Ping ZHAN ; Hui YU ; Weidong WANG ; Hongyun LIU
Journal of Biomedical Engineering 2025;42(4):832-840
Brain age prediction, as a significant approach for assessing brain health and early diagnosing neurodegenerative diseases, has garnered widespread attention in recent years. Electroencephalogram (EEG), an non-invasive, convenient, and cost-effective neurophysiological signal, offers unique advantages for brain age prediction due to its high temporal resolution and strong correlation with brain functional states. Despite substantial progress in enhancing prediction accuracy and generalizability, challenges remain in data quality and model interpretability. This review comprehensively examined the advancements in EEG-based brain age prediction, detailing key aspects of data preprocessing, feature extraction, model construction, and result evaluation. It also summarized the current applications of machine learning and deep learning methods in this field, analyzed existing issues, and explored future directions to promote the widespread application of EEG-based brain age prediction in both clinical and research settings.
Humans
;
Electroencephalography/methods*
;
Brain/physiology*
;
Machine Learning
;
Aging/physiology*
;
Deep Learning
;
Signal Processing, Computer-Assisted
9.A study on heart sound classification algorithm based on improved Mel-frequency cepstrum coefficient feature extraction and deep Transformer.
Journal of Biomedical Engineering 2025;42(5):1012-1020
Heart sounds are critical for early detection of cardiovascular diseases, yet existing studies mostly focus on traditional signal segmentation, feature extraction, and shallow classifiers, which often fail to sufficiently capture the dynamic and nonlinear characteristics of heart sounds, limit recognition of complex heart sound patterns, and are sensitive to data imbalance, resulting in poor classification performance. To address these limitations, this study proposes a novel heart sound classification method that integrates improved Mel-frequency cepstral coefficients (MFCC) for feature extraction with a convolutional neural network (CNN) and a deep Transformer model. In the preprocessing stage, a Butterworth filter is applied for denoising, and continuous heart sound signals are directly processed without segmenting the cardiac cycles, allowing the improved MFCC features to better capture dynamic characteristics. These features are then fed into a CNN for feature learning, followed by global average pooling (GAP) to reduce model complexity and mitigate overfitting. Lastly, a deep Transformer module is employed to further extract and fuse features, completing the heart sound classification. To handle data imbalance, the model uses focal loss as the objective function. Experiments on two public datasets demonstrate that the proposed method performs effectively in both binary and multi-class classification tasks. This approach enables efficient classification of continuous heart sound signals, provides a reference methodology for future heart sound research for disease classification, and supports the development of wearable devices and home monitoring systems.
Heart Sounds/physiology*
;
Humans
;
Algorithms
;
Neural Networks, Computer
;
Signal Processing, Computer-Assisted
;
Deep Learning
;
Cardiovascular Diseases/diagnosis*
;
Classification Algorithms
10.Synchronized neural rhythms in rat hippocampal CA1 region and orbitofrontal cortex are involved in learning and memory consolidation in spatial goal-directed tasks.
Lingwei TANG ; Jiasong LI ; Haibing XU
Journal of Southern Medical University 2025;45(3):479-487
OBJECTIVES:
To investigate the neural mechanisms of rhythmic activity in the hippocampal CA1 region and orbitofrontal cortex (OFC) during a spatial goal-directed task.
METHODS:
Four long-Evans rats were trained to perform a spatial goal-directed task in a land-based water maze (Cheese-board maze). The task was divided into 5 periods: Pre-test, Pre-sleep, Learning, Post-sleep, and Post-test. During the Learning phase, the task was split into two goal navigation and two reward acquisition processes with a total of 8 learning stages. Local field potentials (LFP) from the CA1 and the OFC were recorded, and power spectral density analysis was performed on Theta (6-12 Hz), Beta (15-30 Hz), Low gamma (30-60 Hz), and High gamma (60-90 Hz) bands. Coherence, phase-locking value (PLV), and phase-amplitude cross coupling (PAC) were used to assess the interactions between the CA1 and the OFC during learning and memory.
RESULTS:
During the task training, the rats showed consistent rhythms of OFC neural activity across the task states (P>0.05) while exhibiting significant changes in Beta and High gamma rhythms in the CA1 region (P<0.05). Coherence and PLV between the CA1 and the OFC were higher during goal navigation, especially in the stable learning phase (Stage 8 vs Stage 1, P<0.01). The rats showed stronger cross-frequency coupling between CA1-Theta and OFC-Low gamma in the Post-test phase than in the Pre-test phase (P<0.05).
CONCLUSIONS
Learning and memory consolidation in goal-directed tasks involve synchronized activity between the CA1 region and the OFC, and cross-frequency coupling plays a key role in maintaining short-term memory of reward locations in rats.
Animals
;
Rats
;
Rats, Long-Evans
;
CA1 Region, Hippocampal/physiology*
;
Memory Consolidation/physiology*
;
Prefrontal Cortex/physiology*
;
Maze Learning/physiology*
;
Goals
;
Male
;
Memory/physiology*
;
Learning/physiology*

Result Analysis
Print
Save
E-mail