1.Effect of Huayu Tongluo moxibustion on learning-memory ability in rats with vascular dementia based on hippocampal Mst1/NF-κB p65 pathway.
Ping WANG ; Jun YANG ; Yu KONG ; Yating ZHANG ; Yinqiu FAN ; Haiping SHI ; Lanying LIU
Chinese Acupuncture & Moxibustion 2025;45(1):53-60
OBJECTIVE:
To observe the effects of Huayu Tongluo (transforming stasis and unblocking collaterals) moxibustion on learning-memory ability and hippocampal mammalian sterile 20-like kinase 1 (Mst1)/nuclear factor κB (NF-κB) p65 pathway related to inflammatory response in rats with vascular dementia (VD).
METHODS:
A total of 60 male Wistar rats of SPF grade were randomly divided into a sham operation group (12 rats) and a modeling group (48 rats). VD model was established by the method of modified bilateral common carotid artery permanent ligation in the modeling group. Thirty-six rats with successful modeling were randomly divided into a model group, a moxibustion group and a western medication group, with 12 rats in each group. Huayu Tongluo moxibustion was applied at "Dazhui" (GV14), "Baihui" (GV20) and "Shenting" (GV24) in the moxibustion group, 20 min each time, once a day, 7 day-intervention was as one course, and 1 day-interval was taken between two courses, for a total of 3 courses. In the western medication group, piracetam was given 0.72 mg/kg by intragastric administration, twice a day, the course of intervention was same as that of the moxibustion group. The learning-memory ability was detected by Morris water maze test; the morphology of hippocampal CA1 region was observed by HE staining; the mRNA expression of Mst1, M1 microglia markers CD86, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) was detected by real-time PCR; the levels of IL-6 and TNF-α in hippocampus were detected by ELISA; and the protein expression of Mst1 and NF-κB p65 in hippocampus was detected by Western blot in rats of each group.
RESULTS:
Compared with the sham operation group, the escape latency was prolonged in the model group (P<0.05); compared with the model group, the escape latency was shortened in the moxibustion group and the western medication group (P<0.05). The cells in the CA1 region of hippocampus were disordered, cell collapse and irregular nuclei could be observed in the model group; compared with the model group, the cell arrangement in the CA1 region of hippocampus was more regular, and the damage was improved in the moxibustion group and the western medication group. Compared with the sham operation group, the mRNA expression of Mst1, CD86, IL-6 and TNF-α, as well as the protein expression of Mst1, NF-κB p65 in hippocampus were increased in the model group (P<0.05). Compared with the model group, the mRNA expression of Mst1, CD86, IL-6 and TNF-α, as well as the protein expression of Mst1, NF-κB p65 in hippocampus were decreased in the moxibustion group and the western medication group (P<0.05). Compared with the sham operation group, the levels of IL-6 and TNF-α in hippocampus were increased in the model group (P<0.05). Compared with the model group, the levels of IL-6 and TNF-α in hippocampus were decreased in the moxibustion group and the western medication group (P<0.05).
CONCLUSION
Huayu Tongluo moxibustion can improve the learning-memory ability of VD rats, the mechanism may be related to regulating the activation of microglia through Mst1/NF-κB p65 pathway, reducing the release of pro-inflammatory factors i.e. IL-6 and TNF-α, so as to alleviating the damage of inflammatory factors in the hippocampus of VD rats.
Animals
;
Male
;
Rats
;
Moxibustion
;
Hippocampus/metabolism*
;
Rats, Wistar
;
Dementia, Vascular/genetics*
;
Memory/drug effects*
;
Humans
;
Transcription Factor RelA/genetics*
;
Learning
;
Protein Serine-Threonine Kinases/genetics*
;
Acupuncture Points
;
Interleukin-6/genetics*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal
2.Effect of Eucommiae Cortex extract mediated by ERβ/JNK pathway on learning and memory ability of APP/PS1 double-transgenic mice.
Yue LI ; Li-Li ZHANG ; Can ZHAO ; Hong-Mei ZHAO ; Yan WANG ; Jin-Lei FU ; Jie ZHANG ; Ning ZHANG ; Hong-Dan XU
China Journal of Chinese Materia Medica 2025;50(2):285-293
To study the ameliorative effect of Eucommiae Cortex extract on spatial learning disabilities in APP/PS1 double-transgenic mice and explore its relationship with estrogen receptor β(ERβ)/c-Jun N-terminal kinase(JNK) signaling pathway, sixty 3-month-old male APP/PS1 mice were randomly divided into a model group, an anti-brain failure capsule group(0.585 g·kg~(-1)), a donepezil hydrochloride group(0.65 mg·kg~(-1)), and a Eucommiae Cortex extract group(1.3 g·kg~(-1)), and 15 C57BL/6 mice of the same genetic background were set as WT control group. The learning and memory ability of mice was assessed by the Morris water maze test(MWM), the passive avoidance test(PAT), and the novel object recognition test(NOR). The histomorphological and cellular ultrastructural features of the hippocampal region of the mice were observed by hematoxylin-eosin(HE) staining and transmission electron microscopy(TEM); the molecular docking validation of the key active ingredients and the key targets was performed by using AutoDock Vina software, and the immunohistochemical method(IHC) was used to detect the ERβ expression in the dentate gyrus(DG) area of mouse hippocampus. Western blot(WB) was utilized to detect the expression of ERβ, p-JNK, and JNK in mouse hippocampal area. Compared with those in the WT control group, the results of behavioral experiments showed that the latency of the mice in the model group was significantly increased, the number of platform traversals, and the target quadrant residence time were significantly decreased in the MWM. The evasion latency was significantly reduced, and the number of errors was significantly increased in the PAT. The index of recognition of novel objects was significantly reduced in the NOR. The results of HE staining indicated that the hippocampal area of mice in the model group showed a decrease in the number of neurons, disorganization of pyramidal cell arrangement, nucleus consolidation, and other changes. TEM results showed that some neuronal nuclei in the hippocampal area had a consolidated state, slightly thickened and aberrant nuclear membranes, and fewer intracytoplasmic nidus bodies; the IHC results showed that the expression of ERβ in the hippocampal DG area of the mice was reduced. The WB results showed that the ERβ expression in the hippocampal tissue was decreased, and the p-JNK/JNK level was elevated. Compared with the model group, the Eucommiae Cortex extract group showed a significant decrease in latency, and increase in number of platform traversals and target quadrant residence time in the MWM, a significant increase in evasion latency and decrease in number of errors in the PAT, and a significant increase in the index of recognition of novel objects in the NOR. In addition, there was an increase in the number of neurons in the hippocampal area of mice. The pyramidal cells tended to be arranged in an orderly manner; the nuclei of neurons in the hippocampal area were in a better state; the expression of ERβ in the hippocampal DG area of the mice was elevated; the expression of ERβ in the hippocampal tissue was elevated, and the level of p-JNK/JNK was reduced. The effects of donepezil hydrochloride group and anti-brain failure capsule on APP/PS1 mice in terms of behavioral, HE, and TEM indexes were similar to those of Eucommiae Cortex extract, and there was no significant difference between donepezil hydrochloride group and the model group in IHC and WB experiments, and the results of molecular docking indicated that the estrogen-like components in Eucommiae Cortex extract were tightly bound to ERβ. In conclusion, the binding of Eucommiae Cortex extract to estrogen receptors, regulation of ERβ expression, and activation of ERβ/JNK signaling pathway may be one of the key mechanisms by which it improves the learning and memory ability of APP/PS1 mice.
Animals
;
Male
;
Mice
;
Mice, Transgenic
;
Memory/drug effects*
;
Mice, Inbred C57BL
;
Estrogen Receptor beta/genetics*
;
Eucommiaceae/chemistry*
;
Alzheimer Disease/psychology*
;
Amyloid beta-Protein Precursor/metabolism*
;
Presenilin-1/metabolism*
;
Humans
;
MAP Kinase Signaling System/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hippocampus/metabolism*
;
Maze Learning/drug effects*
;
Learning/drug effects*
3.Mechanism of Daotan Xixin Decoction in treating APP/PS1 mice based on high-throughput sequencing technology and bioinformatics analysis.
Bo-Lun CHEN ; Jian-Zheng LU ; Xin-Mei ZHOU ; Xiao-Dong WEN ; Yuan-Jing JIANG ; Ning LUO
China Journal of Chinese Materia Medica 2025;50(2):301-313
This study aims to investigate the therapeutic effect and mechanism of Daotan Xixin Decoction on APP/PS1 mice. Twelve APP/PS1 male mice were randomized into four groups: APP/PS1 and low-, medium-, and high-dose Daotan Xixin Decoction. Three C57BL/6 wild-type mice were used as the control group. The learning and memory abilities of mice in each group were examined by the Morris water maze test. The pathological changes of hippocampal nerve cells were observed by hematoxylin-eosin staining and Nissl staining. Immunohistochemistry was employed to detect the expression of β-amyloid(Aβ)_(1-42) in the hippocampal tissue. The high-dose Daotan Xixin Decoction group with significant therapeutic effects and the model group were selected for high-throughput sequencing. The differentially expressed gene(DEG) analysis, Gene Ontology(GO) analysis, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and Gene Set Variation Analysis(GSVA) were performed on the sequencing results. RT-qPCR and Western blot were conducted to determine the mRNA and protein levels, respectively, of some DEGs. Compared with the APP/PS1 group, Daotan Xixin Decoction at different doses significantly improved the learning and memory abilities of APP/PS1 mice, ameliorated the neuropathological damage in the CA1 region of the hippocampus, increased the number of neurons, and decreased the deposition of Aβ_(1-42) in the brain. A total of 1 240 DEGs were screened out, including 634 genes with up-regulated expression and 606 genes with down-regulated expression. The GO analysis predicted the biological processes including RNA splicing and protein folding, the cellular components including spliceosome complexes and nuclear spots, and the molecular functions including unfolded protein binding and heat shock protein binding. The KEGG pathway enrichment analysis revealed the involvement of neurodegenerative disease pathways, amyotrophic lateral sclerosis, and splicing complexes. Further GSVA pathway enrichment analysis showed that the down-regulated pathways involved nuclear factor-κB(NF-κB)-mediated tumor necrosis factor-α(TNF-α) signaling pathway, UV response, and unfolded protein response, while the up-regulated pathways involved the Wnt/β-catenin signaling pathway. The results of RT-qPCR and Western blot showed that compared with the APP/PS1 group, Daotan Xixin Decoction at different doses down-regulated the mRNA and protein levels of signal transducer and activator of transcription 3(STAT3), NF-κB, and interleukin-6(IL-6) in the hippocampus. In conclusion, Daotan Xixin Decoction can improve the learning and memory abilities of APP/PS1 mice by regulating the STAT3/NF-κB/IL-6 signaling pathway.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Male
;
Alzheimer Disease/metabolism*
;
Computational Biology
;
Mice, Inbred C57BL
;
High-Throughput Nucleotide Sequencing
;
Amyloid beta-Protein Precursor/metabolism*
;
Hippocampus/metabolism*
;
Mice, Transgenic
;
Presenilin-1/metabolism*
;
Humans
;
Memory/drug effects*
;
Maze Learning/drug effects*
;
Amyloid beta-Peptides/genetics*
;
Disease Models, Animal
4.Mechanism of Zhifuxin in prevention and treatment of vascular dementia in long-term hypoperfused rats.
Xiao-Qing LI ; Xue ZHOU ; Jiu-Qun ZHU ; Zheng-Huai TAN
China Journal of Chinese Materia Medica 2025;50(7):1900-1907
This paper aims to evaluate the pharmacodynamic effect and mechanism of Zhifuxin in the prevention and treatment of vascular dementia(VD), providing a theoretical basis for later development. Bilateral common carotid artery ligation in male Wistar rats was conducted to replicate the long-term hypoperfused VD model, and the drug was given to groups after one month. The rats were fed daily with nimodipine of 20 mg·kg~(-1), Zhifuxin of 50, 100, and 200 mg·kg~(-1), or the same volume of solvent for four weeks. 24 hours after the last dose, Morris water maze experiments were performed to detect the learning and memory abilities of rats. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in the brain tissue of rats; the immunohistochemical method was used to detect the expression of muscarinic acetylcholine receptors M1 and M4 in rats and determine the content of acetyl choline(Ach), acetylcholin esterase(AchE), malondialdehyde(MDA), choline acetyl transferase(ChAT), and dimethyl arginine hydrolase 1(DDAH1) in the cerebral cortex of rats. Western blot was employed to detect protein expression of endothelial nitric oxide synthase(eNOS), caveolin-1, monoamine oxidase A(MAO-A), and monoamine oxidase B(MAO-B). RT-qPCR was utilized to detect mRNA expression of eNOS, caveolin-1, MAO-A, and MAO-B. The results showed that compared with the model group, the different doses of Zhifuxin were able to shorten the latency of VD rats in the water maze positioning navigation test, increase the number of crossing platforms in the space exploration test, and alleviate cone cell contracture in the hippocampus of VD rats. The expression of biochemical indicators related to the cholinergic system in the cerebral cortex: M1 and M4 receptors increased, as well as ChAT activity, and AchE activity significantly decreased. The protein and mRNA expression of indicators related to the eNOS/NO pathway: DDAH1 content, eNOS, and caveolin-1 increased, and that of indicators related to monoamine oxidase(MAO): MAO-A and MAO-B significantly decreased. The results show that Zhifuxin can improve cognition ability in long-term hypoperfused VD rats, and its mechanism of action may be related to its ability to modulate the cholinergic system and the eNOS/NO pathway and inhibit MAO expression.
Animals
;
Dementia, Vascular/metabolism*
;
Male
;
Rats, Wistar
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Maze Learning/drug effects*
;
Nitric Oxide Synthase Type III/genetics*
;
Acetylcholinesterase/metabolism*
;
Humans
;
Choline O-Acetyltransferase/genetics*
;
Disease Models, Animal
5.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
6.Effect and mechanism of Moringa oleifera leaves, seeds, and velamen in improving learning and memory impairments in mice based on transcriptomic and metabolomic.
Zhi-Hao WANG ; Shu-Yi FENG ; Tao LI ; Wan-Ping ZHOU ; Jin-Yu WANG ; Yang LIU ; Lin ZHANG ; Yuan-Yuan XIE ; Xiu-Lan HUANG ; Zhi-Yong LI ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(13):3793-3812
Moringa oleifera, widely utilized in Ayurvedic medicine, is recognized for its leaves, seeds, and velamen possessing traditional effects such as vātahara(wind alleviation), sirovirecaka(brain clearing), and hridya(mental nourishment). This study aims to identify the medicinal part of ■ in the Sārasvata ghee formulation as described in the Bower Manuscript, while investigating the ameliorative effects of different medicinal parts of M. oleifera on learning and memory deficits in mice and elucidating the underlying molecular mechanisms. A total of 144 male ICR mice were randomly assigned to the following groups: control, model(scopolamine hydrobromide, Sco, 2 mg·kg~(-1)), donepezil(donepezil hydrochloride, Don, 3 mg·kg~(-1)), M. oleifera leaf low-, medium-, and high-dose groups(0.5, 1, 2 g·kg~(-1)), M. oleifera seeds low-, medium-, and high-dose groups(0.25, 0.5, 1 g·kg~(-1)), and M. oleifera velamen low-, medium-, and high-dose groups(0.31, 0.62, 1.24 g·kg~(-1)). Learning and memory abilities were assessed using the passive avoidance test and Morris water maze. Nissl and HE staining were employed to examine histopathological changes in the hippocampus. Transcriptomics and targeted metabolomics were used to screen differential genes and metabolites, with MetaboAnalyst 6.0 and O2PLS methods applied to identify key disease-related targets and pathways. RESULTS:: demonstrated that M. oleifera leaf(1 g·kg~(-1)) significantly ameliorated Sco-induced learning and memory deficits, outperforming M. oleifera seeds(0.25 g·kg~(-1)) and M. oleifera velamen(1.24 g·kg~(-1)). This was evidenced by improved behavioral performance, reversal of neuronal damage, and reduced acetylcholinesterase(AChE) activity. Multi-omics analysis revealed that M. oleifera leaf upregulated Tuba1c gene expression through the synaptic vesicle cycle, enhancing glutamate(Glu), dopamine(DA), and acetylcholine(ACh) release via Tuba1c-Glu associations for neuroprotection. M. oleifera seeds targeted the dopaminergic synapse pathway, promoting memory consolidation through Drd2-ACh associations. M. oleifera velamen was associated with the cocaine addiction pathway, modulating dopamine metabolism via Adora2a-DOPAC, with limited relevance to learning and memory. In conclusion, M. oleifera leaf exhibits superior efficacy and mechanistic advantages over M. oleifera seeds and velamen, suggesting that the ■ in the Sārasvata ghee formulation is likely M. oleifera leaf, providing scientific evidence for its identification in ancient texts.
Animals
;
Moringa oleifera/chemistry*
;
Male
;
Mice
;
Seeds/chemistry*
;
Plant Leaves/chemistry*
;
Mice, Inbred ICR
;
Memory Disorders/psychology*
;
Transcriptome/drug effects*
;
Memory/drug effects*
;
Learning/drug effects*
;
Metabolomics
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Maze Learning/drug effects*
7.Berberine Hydrochloride Improves Cognitive Function and Hippocampal Antioxidant Status in Subchronic and Chronic Lead Poisoning.
Fatemeh Zare MEHRJERDI ; Azadeh Shahrokhi RAEINI ; Fatemeh Sadate ZEBHI ; Zeynab HAFIZI ; Reyhaneh MIRJALILI ; Faezeh Afkhami AGHDA
Chinese journal of integrative medicine 2025;31(1):49-54
OBJECTIVES:
To determine the neuroprotective effects of berberine hydrochloride (BBR) against lead-induced injuries on the hippocampus of rats.
METHODS:
Wistar rats were exposed orally to doses of 100 and 500 ppm lead acetate for 1 and 2 months to develop subchronic and chronic lead poisening models, respectively. For treatment, BBR (50 mg/kg daily) was injected intraperitoneally to rats poisoned with lead. At the end of the experiment, the spatial learning and memory of rats were assessed using the Morris water maze test. Hippocampal tissue changes were examined by hematoxylin and eosin staining. The activity of antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase, and malondialdehyde levels as parameters of oxidative stress and antioxidant status of the hippocampus were evaluated.
RESULTS:
BBR reduced cognitive impairment in rats exposed to lead (P<0.05 or P<0.01). The resulting biochemical changes included a decrease in the activity of antioxidants and an increase in lipid peroxidation of the hippocampus of lead-exposed rats (P<0.05 or P<0.01), which were significantly modified by BBR (P<0.05). BBR also increased the density of healthy cells in the hippocampus of leadexposed rats (P<0.05). Significant changes in tissue morphology and biochemical factors of the hippocampus were observed in rats that received lead for 2 months (P<0.05). Most of these changes were insignificant in rats that received lead for 1 month.
CONCLUSION
BBR can improve oxidative tissue changes and hippocampal dysfunction in lead-exposed rats, which may be due to the strong antioxidant potential of BBR.
Animals
;
Hippocampus/pathology*
;
Rats, Wistar
;
Antioxidants/pharmacology*
;
Berberine/therapeutic use*
;
Cognition/drug effects*
;
Male
;
Lead Poisoning/metabolism*
;
Chronic Disease
;
Oxidative Stress/drug effects*
;
Maze Learning/drug effects*
;
Rats
;
Lipid Peroxidation/drug effects*
;
Malondialdehyde/metabolism*
8.Chaihu Shugan Decoction improves cognitive impairment after epilepsy in rats by regulating hippocampal NMDAR subunits via upregulating ASIC1.
Yunhong YU ; Wei XIE ; Hui LI
Journal of Southern Medical University 2025;45(7):1506-1512
OBJECTIVES:
To explore the therapeutic mechanism of Chaihu Shugan (CHSG) Decoction for improving cognitive impairment in rats with epilepsy induced by lithium chloride and pilocarpine.
METHODS:
Male SD rat models of cognitive impairment model after epilepsy induced by intraperitoneal injection with lithium chloride and pilocarpine were randomly divided into 5 groups (n=12) for treatment with daily gavage of saline, donepezil (90 mg/kg), or CHSG Decoction at 2.5, 5.0, 10, 20 and 40 g/kg for 4 consecutive weeks, with 10 rats with intraperitoneal injection with saline as the blank control group. Morris water maze test was used to evaluate cognitive and behavioral changes of the rats after treatment. The mRNA and protein expressions of ASIC1, NR1, NR2A and NR2B in the hippocampus of rats were detected using RT-qPCR and Western blotting.
RESULTS:
Compared with those with saline treatment, the rat models treated with CHSG Decoction at 5 and 10 g/kg showed significantly shortened escape latency and prolonged stay in the target quadrant with increased number of platform crossings in Morris water maze test. CHSG Decoction treatment at the two doses significantly increased ASIC1, NR1, NR2A and NR2B protein expressions in the hippocampus of the rat models, and their mRNA expression levels were all increased significantly after the treatment at the doses above 2.5 g/kg.
CONCLUSIONS
CHSG Decoction can improve cognitive impairment in rats after epilepsy possibly by regulating the expression and channel activity of NMDAR protein and its subunit protein via upregulating ASIC1 to modulate neuronal excitability and synaptic plasticity in the hippocampus.
Animals
;
Hippocampus/drug effects*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Acid Sensing Ion Channels/metabolism*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Epilepsy/complications*
;
Cognitive Dysfunction/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Up-Regulation
;
Maze Learning
9.Effects of Acorus tatarinowii Schott and its active component -5- hydroxymethylfurfural on ERK/CREB signal in hippocampus of exercise-induced fatigue rats.
Hui-Hua CHEN ; Mei-Ju ZHU ; Hong-Zhu ZHU ; Xiao-Min DING ; Hui WANG ; Ze-Hua MAO
Chinese Journal of Applied Physiology 2019;35(4):366-370
OBJECTIVE:
To investigate the effects of Acorus tatarinowii Schott and its active component 5- hydroxymethyl furfural (HMF) on learning and memory and ERK/CREB signal in hippocampus of rats with exercise-induced fatigue.
METHODS:
SD rats were randomly divided into normal group (A), exercise group (B), exercise + HMF low, middle and high dose treatment group (C, D, E), exercise + acorus tatarinowii Schott low, middle and high dose treatment group (F, G, H), with ten rats in each group. The rats in group C, D and E were treated with HMF at the doses of 0.10, 1.00 and 3.00 mg. kg by ig. The rats in group F, G and H were treated with the extracts of Acorus tatarinowii Schott at the doses of 0.12, 1.20 and 4.80 g. kg by ig. Learning and memory of rats were tested by the method of water maze experiment, and the expression levels of p-ERK1/2 and p-CREB protein in hippocampus of rats were tested by the method of Western blot in the end of the experiment.
RESULTS:
The escape latencies of E and H groups were lower than those of groups B, C, D, F and G; and the numbers of plateau crossing were more than those of groups B, C, D, F and G and the expression levels of p-ERK1/2, p-CREB protein were higher than those of groups B, C, D, F and G , respectively(P < 0.01). There was no significant difference in the above indexes among groups A, E and H(P>0.05) except that the expression levels of p-ERK2 protein in group E were lower than those in group A and H (P<0.05).
CONCLUSION
Acorus tatarinowii and its active component- HMF can improve the learning and memory of rats with exercise-induced fatigue, and the mechanism is related to the up-regulation of ERK / CREB signal in hippocampus of rats with exercise-induced fatigue.
Acorus
;
chemistry
;
Animals
;
Cyclic AMP Response Element-Binding Protein
;
metabolism
;
Fatigue
;
drug therapy
;
Furaldehyde
;
analogs & derivatives
;
pharmacology
;
Hippocampus
;
metabolism
;
MAP Kinase Signaling System
;
Maze Learning
;
drug effects
;
Memory
;
drug effects
;
Physical Conditioning, Animal
;
Phytochemicals
;
pharmacology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
10.Effects of berberine on learning and memory ability in vascular cognitive impairment rats.
Ru-Huan WANG ; Ru ZHOU ; Yang DING ; Zhen-Xing ZHOU
Chinese Journal of Applied Physiology 2019;35(4):359-362
OBJECTIVE:
To investigate the effects of berberine on learning and memory ability in vascular cognitive impairment rats.
METHODS:
Sixty-eight Wistar rats were randomly divided into control group (n=10), sham operated group (n=10) and the modeling group of vascular cognitive impairment rat (n=48), then the rats in modeling group were randomly divided into four groups (n=10): vehicle group, berberine low dose group (20 mg/kg), medium dose group (40 mg/kg) and high dose group (60 mg/kg). Bilateral common carotid arteries were occluded in rats to establish vascular cognitive impairment (VCI) model. Different doses of berberine were intraperitoneally injected into the treatment group and normal saline was intraperitoneally injected into the other groups once a day for a total of 34 days. After 28 days of administration, Morris water maze was used to test the learning and memory ability of rats. After the water maze experiment, the levels of superoxide dismutase (SOD) activity, glutathione (GSH), malondialdehyde (MDA), tumor necrosis factor alpha(TNF-α), interleukin-1 beta (IL-1β), 5-hydroxytryptamine (5-HT) and monoamine oxidase (MAO) in the forebrain cortex were detected.
RESULTS:
Compared to sham group, the escape latency in VCI group was significantly extended (P<0.01) and the times of passing through the platform were decreased remarkably (P<0.01). The levels of SOD, GSH and 5-HT in the hippocampus or anterior cortex were decreased significantly (P<0.01), while the contents of MDA, TNF-α, IL-1β and MAO were increased remarkably (P<0.01). Compared with VCI group, the escape latency in berberine-treated groups was shortened significantly (P<0.01, P<0.05) and the times of passing through the platform were increased remarkably (P<0.01, P<0.05), the levels of SOD, GSH and 5-HT were increased significantly (P<0.01), while the contents of TNF-α, IL-1β and MAO were decreased remarkably (P<0.01).
CONCLUSION
Berberine could significantly improve the spatial learning and memory abilities of rats with vascular cognitive impairment. The mechanism may be related to the effects of berberine on the hippocampal antioxidant stress, anti-inflammatory response and the monoamine neurotransmitter system in the forebrain cortex. Berberine 60 mg/kg dose group had better effect.
Animals
;
Berberine
;
pharmacology
;
Cognitive Dysfunction
;
drug therapy
;
Hippocampus
;
Inflammation
;
Maze Learning
;
drug effects
;
Memory
;
drug effects
;
Oxidative Stress
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Rats, Wistar

Result Analysis
Print
Save
E-mail