1.Analyzing Differences in Volatile Components of Citri Reticulatae Pericarpium Before and After Being Stir-fried with Halloysitum Rubrum Based on HS-GC-MS and Intelligent Sensory Technology
Li XIN ; Jiawen WEN ; Wenhui GONG ; Beibei ZHAO ; Shihao YAN ; Huashi CHEN ; Haiping LE ; Jinlian ZHANG ; Yanhua XUE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):157-162
ObjectiveTo analyze the differences in color, odor and volatile components of Citri Reticulatae Pericarpium(CRP) before and after being stir-fried with Halloysitum Rubrum, and to explore the material basis of enhancing the effect of strengthening spleen after processing and the scientific connotation of decoction pieces processed with Halloysitum Rubrum as the auxiliary material. MethodsThe volatile components of the samples before and after processing were identified and relatively quantified by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the volatile components were analyzed by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). According to the principle of variable importance in the projection(VIP) value>1.5, volatile differential components before and after processing were screened. And combined with intelligent sensory technologies such as colorimeter and electronic nose, the chroma and odor information of CRP before and after being stir-fried with Halloysitum Rubrum were identified. Pearson correlation analysis was used to explore the correlation between volatile differential components and chroma values. ResultsA total of 112 volatile components were identified from CRP and CRP stir-fried with Halloysitum Rubrum, of which 84 were from CRP and 97 were from CRP stir-fried with Halloysitum Rubrum. And 7 differential components were selected, including α-pinene, β-myrcene, linalool, sabinene, ocimene isomer mixture, A-ocimene, and δ-elemene. After being processed with Halloysitum Rubrum, the brightness value(L*), yellow-blue value(b*) and total chromatic value(E*ab) of CRP were decreased(P<0.01), and red-green value(a*) was increased(P<0.01), the response values of S4, S5, S10 and S13 sensors were significantly increased(P<0.05), and the response values of S3 and S8 sensors were significantly decreased(P<0.05). Correlation analysis showed that α-pinene and β-myrcene were negatively correlated with L* and E*ab, but positively correlated with a*. Sabinene was positively correlated with L* and E*ab. Linalool was positively correlated with L* and E*ab, and negatively correlated with a*. The ocimene isomer mixture was positively correlated with the L*. ConclusionAfter being processed with Halloysitum Rubrum, the appearance color, odor and volatile components of CRP change significantly, and α-pinene, β-myrcene, sabinene, linalool and A-ocimene are the characteristic volatile components before and after processing, which can provide references for the quality evaluation and clinical application of CRP and its processed products.
2.Analyzing Differences in Volatile Components of Citri Reticulatae Pericarpium Before and After Being Stir-fried with Halloysitum Rubrum Based on HS-GC-MS and Intelligent Sensory Technology
Li XIN ; Jiawen WEN ; Wenhui GONG ; Beibei ZHAO ; Shihao YAN ; Huashi CHEN ; Haiping LE ; Jinlian ZHANG ; Yanhua XUE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):157-162
ObjectiveTo analyze the differences in color, odor and volatile components of Citri Reticulatae Pericarpium(CRP) before and after being stir-fried with Halloysitum Rubrum, and to explore the material basis of enhancing the effect of strengthening spleen after processing and the scientific connotation of decoction pieces processed with Halloysitum Rubrum as the auxiliary material. MethodsThe volatile components of the samples before and after processing were identified and relatively quantified by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the volatile components were analyzed by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). According to the principle of variable importance in the projection(VIP) value>1.5, volatile differential components before and after processing were screened. And combined with intelligent sensory technologies such as colorimeter and electronic nose, the chroma and odor information of CRP before and after being stir-fried with Halloysitum Rubrum were identified. Pearson correlation analysis was used to explore the correlation between volatile differential components and chroma values. ResultsA total of 112 volatile components were identified from CRP and CRP stir-fried with Halloysitum Rubrum, of which 84 were from CRP and 97 were from CRP stir-fried with Halloysitum Rubrum. And 7 differential components were selected, including α-pinene, β-myrcene, linalool, sabinene, ocimene isomer mixture, A-ocimene, and δ-elemene. After being processed with Halloysitum Rubrum, the brightness value(L*), yellow-blue value(b*) and total chromatic value(E*ab) of CRP were decreased(P<0.01), and red-green value(a*) was increased(P<0.01), the response values of S4, S5, S10 and S13 sensors were significantly increased(P<0.05), and the response values of S3 and S8 sensors were significantly decreased(P<0.05). Correlation analysis showed that α-pinene and β-myrcene were negatively correlated with L* and E*ab, but positively correlated with a*. Sabinene was positively correlated with L* and E*ab. Linalool was positively correlated with L* and E*ab, and negatively correlated with a*. The ocimene isomer mixture was positively correlated with the L*. ConclusionAfter being processed with Halloysitum Rubrum, the appearance color, odor and volatile components of CRP change significantly, and α-pinene, β-myrcene, sabinene, linalool and A-ocimene are the characteristic volatile components before and after processing, which can provide references for the quality evaluation and clinical application of CRP and its processed products.
4.Advancements in CRISPR/Cas systems for disease treatment.
Yangsong XU ; Hao LE ; Qinjie WU ; Ning WANG ; Changyang GONG
Acta Pharmaceutica Sinica B 2025;15(6):2818-2844
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is an adaptive immune system present in most bacteria and archaea, protecting them from infection by exogenous genetic elements. Due to its simplicity, cost-effectiveness, and precise gene editing capabilities, CRISPR/Cas technology has emerged as a promising tool for treating diseases. The continuous refinement of derivative systems has further broadened its scope in disease treatment. Nevertheless, the heterogeneous physiopathological nature of diseases and variations in disease onset sites pose significant challenges for in vivo applications of CRISPR systems. The efficiency of CRISPR systems in disease treatment is directly influenced by the performance of the delivery system. Additionally, concerns such as off-target effects present crucial hurdles in the clinical implementation of CRISPR systems. This review provides a comprehensive overview of the development of CRISPR systems, vector technologies, and their applications in disease treatment, while also addressing the challenges encountered in clinical settings. Furthermore, future research directions are outlined to pave the way for advancements in CRISPR-based therapies.
5.KG-CNNDTI: a knowledge graph-enhanced prediction model for drug-target interactions and application in virtual screening of natural products against Alzheimer's disease.
Chengyuan YUE ; Baiyu CHEN ; Long CHEN ; Le XIONG ; Changda GONG ; Ze WANG ; Guixia LIU ; Weihua LI ; Rui WANG ; Yun TANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1283-1292
Accurate prediction of drug-target interactions (DTIs) plays a pivotal role in drug discovery, facilitating optimization of lead compounds, drug repurposing and elucidation of drug side effects. However, traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features. In this study, we proposed KG-CNNDTI, a novel knowledge graph-enhanced framework for DTI prediction, which integrates heterogeneous biological information to improve model generalizability and predictive performance. The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm, which were further enriched with contextualized sequence representations obtained from ProteinBERT. For compound representation, multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated. The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor. Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods, particularly in terms of Precision, Recall, F1-Score and area under the precision-recall curve (AUPR). Ablation analysis highlighted the substantial contribution of knowledge graph-derived features. Moreover, KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease, resulting in 40 candidate compounds. 5 were supported by literature evidence, among which 3 were further validated in vitro assays.
Alzheimer Disease/drug therapy*
;
Biological Products/therapeutic use*
;
Humans
;
Neural Networks, Computer
;
Machine Learning
;
Drug Discovery/methods*
;
Algorithms
;
Drug Evaluation, Preclinical/methods*
6.Effects and mechanisms of zinc ion-loaded composite hydrogel on infected full-thickness skin defect wounds in diabetic mice
Zeping PAN ; Yunlong SHI ; Zhiqiang YUAN ; Yizhi PENG ; Zhonglian AN ; Shuai LE ; Yali GONG
Chinese Journal of Burns 2024;40(9):866-875
Objective:To investigate the effects and mechanisms of zinc ion-loaded composite hydrogel (hereinafter referred to as the zinc-containing hydrogel) on infected full-thickness skin defect wounds in diabetic mice.Methods:This study was an experimental study. A poly (glycerol sebacate)-co-poly(ethylene glycol)-g-catechol prepolymer/quaternized-chitosan hydrogel (hereinafter referred to as the simple hydrogel) and a solid-state zinc-containing hydrogel with porous and good adhesion by adding zinc ions to the simple hydrogel were prepared. The release rate of zinc ions from the zinc-containing hydrogel after immersion in phosphate buffer solution (PBS) for 14 days was calculated. The concentration of methicillin-resistant Staphylococcus aureus (MRSA) cultured for 2 hours with the simple hydrogel, zinc-containing hydrogel, and PBS was measured. The scavenging ability of the simple hydrogel, zinc-containing hydrogel, and PBS for 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2, 4, 6-trinitrophenyl) hydrazyl (DPPH) was detected using microplate reader to reflect the ability of oxygen free radical removal. The length of vessels formed by human umbilical vein endothelial cells (HUVECs) cultured for 24 hours with the simple hydrogel, zinc-containing hydrogel, and PBS was measured. The cell viability of L929 cells cultured for 24 hours with the simple hydrogel, zinc-containing hydrogel, and PBS was detected using the cell counting kit-8. The mouse red blood cell suspension was divided into blank control group treated with PBS, simple hydrogel group, zinc-containing hydrogel group, and Triton X-100 group treated with corresponding solution. Hemolysis was detected using microplate reader after 2 hours of treatment, and the hemolysis rate was calculated. All experiments had a sample size of 3. Twenty-one C57BL/6J mice aged 6-8 weeks were taken, and a full-thickness skin defect wound was prepared in the symmetrical position on the back spine and infected with MRSA. Mice were divided into blank control group treated with PBS, simple hydrogel group, and zinc-containing hydrogel group treated with the corresponding hydrogel. Three days after injury, bacterial concentration in the wounds were measured in all groups of mice ( n=4). On day 0 (immediately), 3, 7, and 14 after injury, the wound infection status of mice was generally observed and the wound healing rate was calculated ( n=5). Hematoxylin-eosin staining and Masson staining were used to detect new epithelium and collagen formation in the wounds of mice on day 14 after injury. Immunofluorescence staining was used to detect neovascularization and distribution of M2 macrophages in the wounds of mice. Results:After immersion for 14 days, the release rate of zinc ions of the zinc-containing hydrogel was (70.5±4.6)%. Compared with the zinc-containing hydrogel, the bacterial concentration was significantly increased after 2 hours of culture with PBS and the simple hydrogel ( P<0.05). The DPPH scavenging rate of the zinc-containing hydrogel was significantly higher than that of PBS and the simple hydrogel (with P values all <0.05). The length of vessels formed by HUVECs cultured for 24 hours with the zinc-containing hydrogel was significantly longer than that cultured with PBS ( P<0.05). Compared with PBS and the simple hydrogel, the cell viability of L929 cells cultured for 24 hours with the zinc-containing hydrogel was significantly higher ( P<0.05). After 2 hours of incubation, compared with that in Triton X-100 group, the hemolysis rate of red blood cells in blank control, simple hydrogel, and zinc-containing hydrogel groups was significantly reduced ( P<0.05); and the hemolysis rate of red blood cells in the latter three groups was similar ( P>0.05). On day 3 after injury, the bacterial concentration in the wounds of mice in zinc-containing hydrogel group was significantly lower than that in blank control and simple hydrogel groups (with P values all <0.05). From day 3 to day 14 after injury, the wounds of mice in all the three groups were gradually healing, and on day 14 after injury, the wounds of mice in the zinc-containing hydrogel group were basically healed. On day 7 after injury, the wound healing rate of mice in zinc-containing hydrogel group was (72.4±8.4)%, which was significantly higher than that of blank control and simple hydrogel groups, being (31.6±6.7)% and (44.7±5.4)%, respectively(with P values all< 0.05). On day 14 after injury, the wound healing rate of mice in zinc-containing hydrogel group was (92.7±4.3)%, which was significantly higher than (73.5±7.4)% in blank control group ( P<0.05). On day 14 after injury, compared with that in blank control and simple hydrogel groups, the newly formed epidermis in mice wound of zinc-containing hydrogel group was longer and thicker, with more collagen deposition, and a more abundant distribution of new vessels and M2 macrophages. Conclusions:The zinc-containing hydrogel exhibits good biocompatibility, oxygen free radical scavenging capacity, and antimicrobial effects both in vitro and in vivo, as well as angiogenic promotion capability. It can provide sustained release of zinc ions to promote re-epithelialization and collagen synthesis, thus enhancing the healing of infected full-thickness skin defect wounds in diabetic mice.
7.Discussion on the Pathogenesis of Osteonecrosis of the Femoral Head Under the System of Non-uniform Settlement During Bone Resorption and Multidimensional Composite Bowstring Working in Coordination with the Theory of Liver-Kidney and Muscle-Bone Based on the Concept of Liver and Kidney Sharing the Common Source
Gui-Xin ZHANG ; Feng YANG ; Le ZHANG ; Jie LIU ; Zhi-Jian CHEN ; Lei PENG ; En-Long FU ; Shu-Hua LIU ; Chang-De WANG ; Chun-Zhu GONG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):239-246
From the perspective of the physiological basis of liver and kidney sharing the common source in traditional Chinese medicine(TCM),and by integrating the theory of kidney dominating bone,liver dominating tendon,and meridian sinew of TCM as well as the bone resorption and collapse theory,and non-uniform settlement theory and lower-limb musculoskeletal bowstring structure theory of modern orthopedics,the pathogenesis of osteonecrosis of the femoral head(ONFH)under the system of non-uniform settlement during bone resorption and multidimensional composite bowstring working in coordination with the theory of liver-kidney and muscle-bone was explored.The key to the TCM pathogenesis of ONFH lies in the deficiency of the liver and kidney,and then the imbalance of kidney yin-yang leads to the disruption of the dynamic balance of bone formation and bone resorption mediated by osteoblasts-osteoclasts,which manifests as the elevated level of bone metabolism and the enhancement of focal bone resorption in the femoral head,and then leads to the necrosis and collapse of the femoral head.It is considered that the kidney dominates bone,liver dominates tendon,and the tendon and bone together constitute the muscle-bone-joint dynamic and static system of the hip joint.The appearance of collapse destroys the originally balanced muscle-bone-joint system.Moreover,the failure of liver blood in the nourishment of muscles and tendons further exacerbates the imbalance of the soft tissues around the hip joint,accelerates the collapse of the muscle-bone-joint dynamic and static system,speeds up the process of femoral head collapse,and ultimately results in irreversible outcomes.Based on the above pathogenesis,the systematic integrative treatment of ONFH should be based on the TCM holistic concept,focuses on the focal improvement of internal and external blood circulation of the femoral head by various approaches,so as to rebuild the coordination of joint function.Moreover,attention should be paid to the physical constitution of the patients,and therapy of tonifying the kidney and regulating the liver can be used to restore the balance between osteogenesis and osteoblastogenesis,and to reconstruct the muscle-bone-joint system,so as to effectively delay or even prevent the occurrence of ONFH.
9.Optimizing outdoor smoking points outside large exhibition halls based on real-time on-site PM2.5 and CO2 monitoring
Jin SUN ; Chenxi YAN ; Zhuohui ZHAO ; Chenchen XIE ; Zhengyang GONG ; Hao TANG ; Kunlei LE ; Yuzhi CHENG ; Zhuyan YIN ; Jingyi YUAN ; De CHEN ; Yunfei CAI
Journal of Environmental and Occupational Medicine 2024;41(6):673-680
Background Improper settings of outdoor smoking points in public places may increase the risk of secondhand smoke exposure among the population. Conducting research on air pollution in and around smoking spots and related influencing factors can provide valuable insights for optimizing the setting of outdoor smoking points. Objective To investigate the influence of the number of smokers at outdoor smoking points and the distance on the diffusion characteristics of surrounding air pollutants, in order to optimize the setting of outdoor smoking points. Methods Surrounding the exhibition halls in the China International Import Expo (CIIE), two outdoor smoking points were randomly selected, one on the first floor (ground level) and the other on the second floor (16 m above ground), respectively. At 0, 3, 6, and 9 m from the smoking points in the same direction, validated portable air pollutant monitors were used to measure the real-time fine particulate matter (PM2.5) and carbon dioxide (CO2) concentrations for consecutive 5 d during the exhibition, as well as the environmental meteorological factors at 0 m with weather meters including wind speed, wind direction, and air pressure. An open outdoor atmospheric background sampling point was selected on each of the two floors to carry out parallel sampling. Simultaneously, the number of smokers at each smoking point were double recorded per minute. The relationships between the number of smokers, distance from the smoking points, and ambient PM2.5 and CO2 concentrations were evaluated by generalized additive regression models for time-series data after adjustment of confounders such as temperature, relative humidity, and wind speed. Results The median numbers of smokers at smoking points on the first and second floors were 6 [interquartile range (IQR): 3, 9] and 9 (IQR: 6, 13), respectively. Windless (wind speed <0.6 m·s−1) occupied most of the time (85.9%) at both locations. The average concentration of ambient PM2.5 at the smoking points (0 m) [mean ± standard deviation, (106±114) μg·m−3] was 4.2 times higher than that of the atmospheric background [(25±7) μg·m−3], the PM2.5 concentration showed a gradient decline with the increase of distance from the smoking points, and the average PM2.5 concentration at 9 m points [(35±22) μg·m−3] was close to the background level (1.4 times higher). The maximum concentration of CO2 [(628±23) μmol·mol−1] was observed at 0 m, and its average value was 1.3 times higher than that of the atmospheric background [(481±40) μmol·mol−1], and there was no gradient decrease in CO2 concentration with increasing distance at 0, 3, 6, and 9 m points. The regression analyses showed that, taking smoking point as the reference, every 3 m increase in distance was associated with a decrease of ambient PM2.5 by 24.6 [95% confidence interval (95%CI): 23.5, 25.8] μg·m−3 (23.2%) and CO2 by 54.1 (95%CI: 53.1, 55.1) μmol·mol−1 (8.6%). Every one extra smoker at the smoking point was associated with an average increase of PM2.5 and CO2 by 2.0 (95%CI: 1.7, 2.8) μg·m−3 and 1.0 (95%CI: 0.7,1.2) μmol·mol−1, respectively. The sensitivity analysis indicated that, under windless conditions, the concentrations of PM2.5 and CO2 at the smoking points were even higher but the decreasing and dispersion characteristics remained consistent. Conclusion Outdoor smoking points could significantly increase the PM2.5 concentrations in the surrounding air and the risks of secondhand smoke exposure, despite of the noticeable decreasing trend with increasing distance. Considering the inevitable poor dispersion conditions such as windless and light wind, outdoor smoking points are recommended to be set at least 9 m or farther away from non-smoking areas.
10.Therapeutic advances in atrial fibrillation based on animal models
GONG QIAN ; LE XUAN ; YU PENGCHENG ; ZHUANG LENAN
Journal of Zhejiang University. Science. B 2024;25(2):135-152
Atrial fibrillation(AF)is the most prevalent sustained cardiac arrhythmia among humans,with its incidence increasing significantly with age.Despite the high frequency of AF in clinical practice,its etiology and management remain elusive.To develop effective treatment strategies,it is imperative to comprehend the underlying mechanisms of AF;therefore,the establishment of animal models of AF is vital to explore its pathogenesis.While spontaneous AF is rare in most animal species,several large animal models,particularly those of pigs,dogs,and horses,have proven as invaluable in recent years in advancing our knowledge of AF pathogenesis and developing novel therapeutic options.This review aims to provide a comprehensive discussion of various animal models of AF,with an emphasis on the unique features of each model and its utility in AF research and treatment.The data summarized in this review provide valuable insights into the mechanisms of AF and can be used to evaluate the efficacy and safety of novel therapeutic interventions.

Result Analysis
Print
Save
E-mail