1.Effects of larval feeding amount on development and deltamethrin resistance in Aedes albopictus.
Ying WANG ; Wengyang DENG ; Chaomei WU ; Shihuan TIAN ; Hua LI
Journal of Southern Medical University 2025;45(3):488-493
OBJECTIVES:
To investigate how larval feeding regimens influence development and deltamethrin resistance of Aedes albopictus to provide evidence for standardizing larval feeding protocols in studies of insecticide resistance.
METHODS:
Aedes albopictus larvae of a laboratory resistant strain were divided into 3 groups (n=500) and reared with high, medium, and low food availability (100, 50, or 25 mg daily for the 1st and 2nd instars, and 500 mg 250, or 125 mg daily for 3rd and 4th instars). The developmental time, pupation rate, adult emergence rate, adult body weight, and wing length were recorded in each group, and deltamethrin resistance of the mosquitoes was assessed using larval bioassays and contact tube tests for adults.
RESULTS:
Significant developmental differences were observed across the 3 feeding groups. Larval development time decreased as the food availability increased, and both high- and low-food groups showed reduced pupation rates (χ²=16.282, 7.440) and emergence rates (χ²=4.093, 6.977) compared to the medium-food group. Adult body weight and wing length were positively correlated with the amount of larval food intake (P<0.05). In high, medium and low food intake groups, larval LC50 values for deltamethrin were 0.110, 0.072 and 0.064 mg/L, adult KDT50 values were 97.404, 68.964 and 65.005 min, and adult mosquitoe mortality rates at 24 h after deltamethrin exposure were 12%, 16% and 19%, respectively.
CONCLUSIONS
The feeding amount during larval stage significantly impacts the development and deltamethrin resistance of Aedes albopictus, suggesting the importance of standardization of larval nutrition for ensuring comparability of resistance test data across laboratories.
Animals
;
Aedes/physiology*
;
Pyrethrins/pharmacology*
;
Nitriles/pharmacology*
;
Larva/physiology*
;
Insecticide Resistance
;
Insecticides/pharmacology*
;
Feeding Behavior
2.A Novel Functional Method of Protector Screening for Zebrafish Lateral Line Hair Cells via the Acoustic Escape Response.
Ling ZHENG ; Qiaosen SHEN ; Tong ZHAO ; Qingsong LIU ; Zihao HUANG ; Feng ZHAO ; Mengqian ZHANG ; Yongdong SONG ; Daogong ZHANG ; Dong LIU ; Fangyi CHEN
Neuroscience Bulletin 2025;41(9):1537-1552
Zebrafish larvae are useful for identifying chemicals against lateral line (LL) hair cell (HC) damage and this type of chemical screen mainly focuses on searching for protectors against cell death. To expand the candidate pool of HC protectors, a self-built acoustic escape response (AER)-detecting system was developed to apply both low-frequency near-field sound transmission and AER image acquisition/processing modules. The device quickly confirmed the changed LL HC functions caused by most known ototoxins, protectors, and neural transmission modifiers, or knockdown of LL HC-expressing genes. With ten devices wired in tandem, five 'hit' chemicals were identified from 124 cyclin-dependent kinase inhibitors to partially restore cisplatin-damaged AER in less than a day. AS2863619, ribociclib, and SU9516 among the hits, protected the HCs in the mouse cochlea. Therefore, using free-swimming larval zebrafish, the self-made AER-detecting device can efficiently identify compounds that are protective against HC damage, including cell death and loss-of-function.
Animals
;
Zebrafish
;
Hair Cells, Auditory/physiology*
;
Lateral Line System/cytology*
;
Escape Reaction/physiology*
;
Larva
;
Mice
;
Cisplatin/toxicity*
;
Drug Evaluation, Preclinical/methods*
3.Single-copy Loss of Rho Guanine Nucleotide Exchange Factor 10 ( arhgef10) Causes Locomotor Abnormalities in Zebrafish Larvae.
Yi ZHANG ; Ming Xing AN ; Chen GONG ; Yang Yang LI ; Yu Tong WANG ; Meng LIN ; Rong LI ; Chan TIAN
Biomedical and Environmental Sciences 2022;35(1):35-44
OBJECTIVE:
To determine if ARHGEF10 has a haploinsufficient effect and provide evidence to evaluate the severity, if any, during prenatal consultation.
METHODS:
Zebrafish was used as a model for generating mutant. The pattern of arhgef10 expression in the early stages of zebrafish development was observed using whole-mount in situ hybridization (WISH). CRISPR/Cas9 was applied to generate a zebrafish model with a single-copy or homozygous arhgef10 deletion. Activity and light/dark tests were performed in arhgef10 -/-, arhgef10 +/-, and wild-type zebrafish larvae. ARHGEF10 was knocked down using small interferon RNA (siRNA) in the SH-SY5Y cell line, and cell proliferation and apoptosis were determined using the CCK-8 assay and Annexin V/PI staining, respectively.
RESULTS:
WISH showed that during zebrafish embryonic development arhgef10 was expressed in the midbrain and hindbrain at 36-72 h post-fertilization (hpf) and in the hemopoietic system at 36-48 hpf. The zebrafish larvae with single-copy and homozygous arhgef10 deletions had lower exercise capacity and poorer responses to environmental changes compared to wild-type zebrafish larvae. Moreover, arhgef10 -/- zebrafish had more severe symptoms than arhgef10 +/- zebrafish. Knockdown of ARHGEF10 in human neuroblastoma cells led to decreased cell proliferation and increased cell apoptosis.
CONCLUSION
Based on our findings, ARHGEF10 appeared to have a haploinsufficiency effect.
Animals
;
Annexin A5
;
Apoptosis
;
Blotting, Western
;
CRISPR-Associated Protein 9
;
CRISPR-Cas Systems
;
Cell Line
;
Cell Proliferation
;
Cells, Cultured
;
Flow Cytometry
;
Genotype
;
Humans
;
In Situ Hybridization
;
Larva/physiology*
;
Phenotype
;
RNA/isolation & purification*
;
Real-Time Polymerase Chain Reaction/standards*
;
Rho Guanine Nucleotide Exchange Factors/metabolism*
;
Sincalide/analysis*
;
Spectrophotometry/methods*
;
Zebrafish/physiology*
4.microRNA-183 is Essential for Hair Cell Regeneration after Neomycin Injury in Zebrafish
Chang Woo KIM ; Ji Hyuk HAN ; Ling WU ; Jae Young CHOI
Yonsei Medical Journal 2018;59(1):141-147
PURPOSE: microRNAs (miRNAs) are non-coding RNAs composed of 20 to 22 nucleotides that regulate development and differentiation in various organs by silencing specific RNAs and regulating gene expression. In the present study, we show that the microRNA (miR)-183 cluster is upregulated during hair cell regeneration and that its inhibition reduces hair cell regeneration following neomycin-induced ototoxicity in zebrafish. MATERIALS AND METHODS: miRNA expression patterns after neomycin exposure were analyzed using microarray chips. Quantitative polymerase chain reaction was performed to validate miR-183 cluster expression patterns following neomycin exposure (500 µM for 2 h). After injection of an antisense morpholino (MO) to miR-183 (MO-183) immediately after fertilization, hair cell regeneration after neomycin exposure in neuromast cells was evaluated by fluorescent staining (YO-PRO1). The MO-183 effect also was assessed in transgenic zebrafish larvae expressing green fluorescent protein (GFP) in inner ear hair cells. RESULTS: Microarray analysis clearly showed that the miR-183 cluster (miR-96, miR-182, and miR-183) was upregulated after neomycin treatment. We also confirmed upregulated expression of the miR-183 cluster during hair cell regeneration after neomycin-induced ototoxicity. miR-183 inhibition using MO-183 reduced hair cell regeneration in both wild-type and GFP transgenic zebrafish larvae. CONCLUSION: Our work demonstrates that the miR-183 cluster is essential for the regeneration of hair cells following ototoxic injury in zebrafish larvae. Therefore, regulation of the miR-183 cluster can be a novel target for stimulation of hair cell regeneration.
Animals
;
Animals, Genetically Modified
;
Cell Count
;
Gene Expression Profiling
;
Gene Expression Regulation/drug effects
;
Gene Knockdown Techniques
;
Green Fluorescent Proteins/metabolism
;
Hair Cells, Auditory/drug effects
;
Hair Cells, Auditory/physiology
;
Larva/drug effects
;
Larva/genetics
;
MicroRNAs/genetics
;
MicroRNAs/metabolism
;
Morpholinos/pharmacology
;
Neomycin/toxicity
;
Regeneration/drug effects
;
Regeneration/genetics
;
Zebrafish/genetics
5.Taurine Transporter dEAAT2 is Required for Auditory Transduction in Drosophila.
Ying SUN ; Yanyan JIA ; Yifeng GUO ; Fangyi CHEN ; Zhiqiang YAN
Neuroscience Bulletin 2018;34(6):939-950
Drosophila dEAAT2, a member of the excitatory amino-acid transporter (EAAT) family, has been described as mediating the high-affinity transport of taurine, which is a free amino-acid abundant in both insects and mammals. However, the role of taurine and its transporter in hearing is not clear. Here, we report that dEAAT2 is required for the larval startle response to sound stimuli. dEAAT2 was found to be enriched in the distal region of chordotonal neurons where sound transduction occurs. The Ca imaging and electrophysiological results showed that disrupted dEAAT2 expression significantly reduced the response of chordotonal neurons to sound. More importantly, expressing dEAAT2 in the chordotonal neurons rescued these mutant phenotypes. Taken together, these findings indicate a critical role for Drosophila dEAAT2 in sound transduction by chordotonal neurons.
Acoustic Stimulation
;
Action Potentials
;
genetics
;
Animals
;
Animals, Genetically Modified
;
Auditory Pathways
;
physiology
;
Calcium
;
metabolism
;
Drosophila
;
genetics
;
Drosophila Proteins
;
genetics
;
metabolism
;
Excitatory Amino Acid Transporter 2
;
genetics
;
metabolism
;
Hearing
;
genetics
;
Larva
;
Luminescent Proteins
;
genetics
;
metabolism
;
Mutation
;
genetics
;
Nervous System
;
cytology
;
Neurons
;
metabolism
6.Repeated Failure in Reward Pursuit Alters Innate Drosophila Larval Behaviors.
Yue FEI ; Dikai ZHU ; Yixuan SUN ; Caixia GONG ; Shenyang HUANG ; Zhefeng GONG
Neuroscience Bulletin 2018;34(6):901-911
Animals always seek rewards and the related neural basis has been well studied. However, what happens when animals fail to get a reward is largely unknown, although this is commonly seen in behaviors such as predation. Here, we set up a behavioral model of repeated failure in reward pursuit (RFRP) in Drosophila larvae. In this model, the larvae were repeatedly prevented from reaching attractants such as yeast and butyl acetate, before finally abandoning further attempts. After giving up, they usually showed a decreased locomotor speed and impaired performance in light avoidance and sugar preference, which were named as phenotypes of RFRP states. In larvae that had developed RFRP phenotypes, the octopamine concentration was greatly elevated, while tβh mutants devoid of octopamine were less likely to develop RFRP phenotypes, and octopamine feeding efficiently restored such defects. By down-regulating tβh in different groups of neurons and imaging neuronal activity, neurons that regulated the development of RFRP states and the behavioral exhibition of RFRP phenotypes were mapped to a small subgroup of non-glutamatergic and glutamatergic octopaminergic neurons in the central larval brain. Our results establish a model for investigating the effect of depriving an expected reward in Drosophila and provide a simplified framework for the associated neural basis.
Acetates
;
pharmacology
;
Animals
;
Animals, Genetically Modified
;
Avoidance Learning
;
physiology
;
Biogenic Amines
;
metabolism
;
Conditioning, Operant
;
physiology
;
Drosophila
;
physiology
;
Drosophila Proteins
;
genetics
;
metabolism
;
Feeding Behavior
;
drug effects
;
physiology
;
Instinct
;
Larva
;
physiology
;
Locomotion
;
drug effects
;
genetics
;
Nervous System
;
cytology
;
Neurons
;
physiology
;
Octopamine
;
metabolism
;
RNA Interference
;
physiology
;
Reward
;
Statistics, Nonparametric
;
Transcription Factors
;
genetics
;
metabolism
7.Natriuretic peptide precursor C coding gene contributes to zebrafish angiogenesis.
Jing-Jing ZHANG ; Xin WANG ; Dong LIU
Acta Physiologica Sinica 2017;69(1):11-16
This study aimed to investigate the expression of the natriuretic peptide precursor C coding gene nppc and its role in angiogenesis during embryonic period of the zebrafish. Whole mount in situ hybridization was performed to detect the expression pattern of nppc. nppc specific morpholino and nppc mRNA were injected respectively into the one-cell stage embryo to specifically knock-down and rescue the expression of nppc in Tg (flk1:GFP) and Tg (fli1a:nGFP) transgenic lines. The morphology and endothelial cell number of intersegmental vessel (ISV) were analyzed after imaging using the laser scanning confocal microscope. The results revealed that nppc was expressed in the brain, heart and vasculature of zebrafish larvae at 24 and 48 hours post-fertilization (hpf). Knock-down of nppc affected the development of ISV. Endothelial cell number was reduced after the knock-down of nppc. These results suggest that nppc controls zebrafish angiogenesis by affecting the endothelial cell proliferation and migration.
Animals
;
Animals, Genetically Modified
;
Cell Movement
;
Cell Proliferation
;
Endothelial Cells
;
physiology
;
Gene Knockdown Techniques
;
Heart
;
physiology
;
Larva
;
Natriuretic Peptides
;
genetics
;
physiology
;
Neovascularization, Physiologic
;
RNA, Messenger
;
Zebrafish
;
genetics
;
physiology
;
Zebrafish Proteins
;
genetics
;
physiology
8.Investigation of the Necrophagous Flies in Beijing.
Journal of Forensic Medicine 2017;33(3):267-270
OBJECTIVES:
To explore the number of necrophagous flies and seasonal distribution of common necrophagous flies at present in Beijing.
METHODS:
The specimens of necrophagous flies were collected by the methods of animal carcass, trapping and feeding. And the specimens were observed and counted after the classification and preservation.
RESULTS:
The necrophagous flies in Beijing belonged to 4 families, 9 subfamilies, 21 genera and 46 species, and 12 species of them were the first records in Beijing. The necrophagous flies had the characteristics of regional and seasonal distribution.
CONCLUSIONS
The data of seasonal distribution of necrophagous flies and common necrophagous flies in Beijing can provide reference for related research.
Animals
;
Beijing
;
Cadaver
;
Diptera/physiology*
;
Entomology
;
Larva
;
Postmortem Changes
9.Adsorption of Toxic Metals and Control of Mosquitos-borne Disease by Lysinibacillus sphaericus: Dual Benefits for Health and Environment.
Edo Vargas JAVIER ; Dussán JENNY
Biomedical and Environmental Sciences 2016;29(3):187-196
OBJECTIVEAssessment of the bacterium L. sphaericus as a dual-action candidate for biological control of mosquito-borne diseases and bioremediation of toxic metals.
METHODSLarvae of the mosquito, C. quinquefasciatus, were first evaluated for metal tolerance and then exposed to 5 ppm cadmium, chromium, arsenic, and lead in assays together with seven strains of L. sphaericus. A probit regression analysis was used to estimate the LC(50) of Cd, Cr, As, and Pb to C. quinquefasciatus. An analysis of covariance and multifactorial ANOVA examined the metal biosorption and larvicidal properties of the seven strains of L. sphaericus.
RESULTSWe found that L. sphaericus adsorbed the toxic metal ions and was toxic against mosquito larvae. The L. sphaericus strain III(3)7 resulted in a larvae mortality of over 80% for all the tested metals. This strain also exhibited the capacity to adsorb 76% of arsenic, 32% of lead, 25% of chromium, and 7% of cadmium.
CONCLUSIONThis study found combined metal adsorption and larval toxicity associated with three strains of L. sphaericus [III(3)7, OT4b.31, and CBAM5]. This suggests that a combination of these strains shows strong dual potential for biological control of mosquitos in heavy metal-contaminated areas and remediate the heavy metal contamination as well.
Animals ; Bacillaceae ; physiology ; Culicidae ; microbiology ; Host-Pathogen Interactions ; Insect Vectors ; Larva ; microbiology ; Metals, Heavy ; metabolism ; toxicity ; Water Pollutants, Chemical ; metabolism ; toxicity
10.Experimental Life History and Biological Characteristics of Fasciola gigantica (Digenea: Fasciolidae).
Anawat PHALEE ; Chalobol WONGSAWAD ; Amnat ROJANAPAIBUL ; Jong Yil CHAI
The Korean Journal of Parasitology 2015;53(1):59-64
This study was conducted to investigate the life history, morphology, and maturation of larval stages and adult worms of Fasciola gigantica in experimental mice. Lymnaea auricularia rubiginosa was used as the intermediate host, and Oryza sativa was used for encystment of the metacercariae, while Mus musculus was used as the definitive host for maturation study. Fresh eggs from the gall bladder of water buffaloes fully developed into embryonated ones and hatched out at days 11-12 after incubation at about 29masculineC. Free-swimming miracidia rapidly penetrated into the snail host, and gradually developed into the next larval stages; sporocyst, redia, and daughter redia with cercariae. Fully-developed cercariae were separated from the redia and shed from the snails on day 39 post-infection (PI). Free-swimming cercariae were immediately allowed to adhere to rice plants, and capsules were constructed to protect metacercariae on rice plants. Juvenile worms were detected in intestines of mice at days 3 and 6 PI, but they were found in the bile duct from day 9 PI. Juvenile and adult flukes were recovered from 16 mice experimentally infected with metacercariae, with the average recovery rate of 35.8%. Sexually mature adult flukes were recovered from day 42 PI. It could be confirmed that experimentally encysted metacercariae could infect and develop to maturity in the experimental host. The present study reports for the first time the complete life history of F. gigantica by an experimental study in Thailand. The obtained information can be used as a guide for prevention, elimination, and treatment of F. gigantica at environment and in other hosts.
Acanthaceae/parasitology
;
Animals
;
Buffaloes/parasitology
;
Fasciola/*anatomy & histology/*physiology
;
Gallbladder/parasitology
;
Larva/anatomy & histology/physiology
;
*Life Cycle Stages
;
Mice
;
Microscopy
;
Oryza sativa/parasitology
;
Time Factors

Result Analysis
Print
Save
E-mail